Agrivoltaic Systems Design and Assessment: A Critical Review, and a Descriptive Model towards a Sustainable Landscape Vision (Three-Dimensional Agrivoltaic Patterns)
As an answer to the increasing demand for photovoltaics as a key element in the energy transition strategy of many countries—which entails land use issues, as well as concerns regarding landscape transformation, biodiversity, ecosystems and human well-being—new approaches and market segments have emerged that consider integrated perspectives. Among these, agrivoltaics is emerging as very promising for allowing benefits in the food–energy (and water) nexus. Demonstrative projects are developing worldwide, and experience with varied design solutions suitable for the scale up to commercial scale is being gathered based primarily on efficiency considerations; nevertheless, it is unquestionable that with the increase in the size, from the demonstration to the commercial scale, attention has to be paid to ecological impacts associated to specific design choices, and namely to those related to landscape transformation issues. This study reviews and analyzes the technological and spatial design options that have become available to date implementing a rigorous, comprehensive analysis based on the most updated knowledge in the field, and proposes a thorough methodology based on design and performance parameters that enable us to define the main attributes of the system from a trans-disciplinary perspective. The energy and engineering design optimization, the development of new technologies and the correct selection of plant species adapted to the PV system are the areas where the current research is actively focusing in APV systems. Along with the continuous research progress, the success of several international experiences through pilot projects which implement new design solutions and use different PV technologies has triggered APV, and it has been met with great acceptance from the industry and interest from governments. It is in fact a significant potential contribution to meet climate challenges touching on food, energy, agriculture and rural policies. Moreover, it is understood—i.e., by energy developers—as a possible driver for the implementation of large-scale PV installations and building integrated agriculture, which without the APV function, would not be successful in the authorization process due to land use concerns. A sharp increase is expected in terms of number of installations and capacity in the near future. Along this trend, new concerns regarding landscape and urban transformation issues are emerging as the implementation of APV might be mainly focused on the efficiency of the PV system (more profitable than agriculture), with insufficient attention on the correct synergy between energy and food production. The study of ecosystem service trade-offs in the spatial planning and design for energy transition, to identify potential synergies and minimize trade-offs between renewable energy and other ecosystem services, has been already acknowledged as a key issue for avoiding conflicts between global and local perspectives. The development of new innovative systems (PV system technology) and components (photovoltaic devices technology) can enhance the energy performance of selected design options for APV greenhouse typology.