Entries by Anna Adair

Case Study: Sunzaun Vertical Solar System

By Anna Richmond-Mueller, NCAT Energy Analyst Sunstall, a California-based solar installer, is helping farmers harvest the sun twice with their new vertical solar system, known as Sunzaun. The Sunzaun vertical solar system was originally engineered by a company in Germany. After seeing successful installations of the product in Europe, Sunstall decided to bring the design […]

Case Study: Soliculture Research Greenhouse

By Anna Richmond-Mueller, NCAT Energy Analyst When it comes to conversations surrounding energy and water use in the modern world, the agricultural industry’s consumption of both is often at the forefront. As the world’s population continues to grow, humanity is tasked with the challenge of finding ways to meet both food and energy demands across […]

Laminated Organic Photovoltaic Modules for Agrivoltaics and Beyond: An Outdoor Stability Study of All-Polymer and Polymer: Small Molecule Blends

In this study, a donor:acceptor polymer blend is optimized for its use in laminated devices while matching the optical needs of crops. The study reveals degradation modes undetectable under laboratory conditions such as module delamination, which accounts for 10–20% loss in active area. Among the active layers tested, polymer:fullerene blends are the most stable and position as robust light harvesters in future building-integrated organic photovoltaic systems.

Grassland Productivity Responds Unexpectedly to Dynamic Light and Soil Water Environments Induced by Photovoltaic Array

In this article, researchers evaluated seasonal patterns of soil moisture (SM) and diurnal variation in incident sunlight (photosynthetic photon flux density [PPFD]) in a single-axis-tracking agrivoltaic system established in a formerly managed semiarid C3 grassland in Colorado. Their goals were to (1) quantify dynamic patterns of PPFD and SM within a 1.2 MW photovoltaic array in a perennial grassland, and (2) determine how aboveground net primary production (ANPP) and photosynthetic parameters responded to the resource patterns created by the photovoltaic array. Investigators found relatively weak relationships between SM and ANPP despite significant spatial variability in both. Further, there was little evidence that light-saturated photosynthesis and quantum yield of CO2 assimilation differed for plants growing directly beneath (lowest PPFD) versus between (highest PPFD) PV panels. Overall, the AV system established in this semiarid managed grassland did not alter patterns of ANPP in ways predictable from past studies of controls of ANPP in open grasslands.

Economic Efficiency of Climate Smart Agriculture Technology: Case of Agrophotovoltaics

In this article, researchers in Korea analyze the profitability of agrivoltaics and its implications for rural sustainability. The profitability of agrivoltaics is verified in all studied regions, and the order of profitability and productivity by region are opposite to each other. Researchers suggest that regions with lower productivity may have a higher preference for installing agrivoltaics, implying the installation of agrivoltaics provides a new incentive to continue farming even in regions with low agricultural productivity.

Farmland Considerations for Siting Grid-Scale Solar Panels

This resource aims to guide informed decisions by landowners, investors, planners, and government officials in considering the planning and siting of grid-scale solar systems in Pennsylvania. The intent is to balance and promote the goals of sustainable income-generation and protection of water, soil, and valuable agricultural land resources.

Agrivoltaic System: Estimation of Photosynthetic Photon Flux Density Under Solar Panels Based on Solar Irradiation Data Using All-Climate Solar Spectrum Model

This study focused on the photosynthetic photon flux density and employed an all-climate solar spectrum model to calculate the photosynthetic photon flux density accurately on farmland partially shaded by solar panels and supporting tubes. The researchers also described an algorithm for estimating the photosynthetic photon flux density values under solar panels, which were then validated using photosynthetic photon flux density sensors. The calculation formula enables farmers to evaluate the economic efficiency of a system before introducing it.