Entries by Anna Adair

An irrigation scheduling algorithm for sustainable energy consumption in pressurized irrigation networks supplied by photovoltaic modules

This study presents a strategy for scheduling water delivery by irrigation pumps, synchronizing energy production in solar photovoltaic modules and minimizing the installation size. An optimization algorithm is proposed, which changes the energy required by pumping devices and adjusts them to the available solar energy supply, minimizing the number of panels required. The results of the study provide a tool for managers and decision-makers when evaluating the possibility of converting their irrigation network into a stand-alone system supplied by photovoltaic panels.

Aquavoltaics Feasibility Assessment: Synergies of Solar PV Power Generation and Aquaculture Production

This study focuses on the dual use of the water area at a small-scale shrimp farm in western Taiwan for solar photovoltaic electricity generation and aquaculture. Based on the simulation results and SWOT (strengths, weaknesses, opportunities, and threats) analysis, recommendations are made for the design and operation of a solar-powered aeration system for shrimp farms.

How Will ESG Requirements Influence Agricultural Photovoltaics?

By Helge Biernath, Sunstall Inc. I just attended the 2023 Solar Farm Summit, where I presented and spoke to the experts in the industry. One topic never came up: How will ESG (environmental, social, and governance) requirements from companies like Coca-Cola Now and Walmart influence agricultural photovoltaics? ESG requirements from such companies are likely to […]

Case Study: James River Grazing

By Anna Richmond-Mueller, NCAT Energy Analyst Located near Richmond, Virginia, the Mechanicsville solar park is one of the state’s first utility-scale solar sites. Covering over 220 acres, the 28-megawatt, single-axis tracking site provides a source of clean power to thousands of homes in the state. More than just a solar site, though, the location is […]

Effects of Shade and Deficit Irrigation on Maize Growth and Development in Fixed and Dynamic Agrivoltaic Systems

This study addresses the interplay between radiation transmission, crop development and irrigation needs of corn cropping in field conditions, by the description of crop development dynamics, distinguishing between fixed and dynamic panels. Researchers showed that maize crop responded to both independent and combined stresses (shade and water deficit), with a significant decrease in leaf area index, total dry matter and grain yield. Concerning water use, we showed the potential of AV to reduce irrigation inputs (by up to 19–47% compared to unshaded plots) via reduced soil water depletion and reference evapotranspiration.