Entries by Marisa Larson

Renewable Energy Generation in the Highway Right-of-Way

State Departments of Transportation (SDOTs) are increasingly exploring the use of highway right-of-way (ROW) to accommodate renewable energy technologies. This paper provides information on potential business models, state rules, regulations, and policies, and example projects for energy generation in the ROW. 

Free Energy Solar Highway Program

The Free Energy Solar Highway Program research project identified best practices nationally and determined the financial feasibility of generating solar power on New Mexico DOT property at the lowest possible cost.

,

MN Research Shows Solar Grazing Improves Soil Quality

Solar energy is the fastest growing renewable energy source. It is predicted that 20-29% of global power will be sourced by solar by 2100. Solar energy requires larger land footprints and long-term commitments. Vegetation left under solar panels reduces soil degradation and opens up the potential for solar grazing as a dual income for farmers and vegetation management for solar utilities. Research conducted on multiple solar sites in Minnesota reveal there can be meaningful forage in 45% shade and 80% shade from solar panels. Furthermore, grazing sheep under solar panels produces both a higher content of carbon and nitrogen in the soil. Managed episodic grazing can be used as a strategy for carbon sequestration and vegetation management. Soil properties show an overall improvement and benefits depending on soil properties. Future work must be done to measure the long term soil carbon and hydrological properties.

,

Solar Park Microclimate and Vegetation Management Effects on Grassland Carbon Cycling

Increasing energy demands and the drive towards low carbon (C) energy sources has prompted a rapid increase in ground-mounted solar parks across the world. This represents a significant global land use change with implications for the hosting ecosystems that are poorly understood. In order to investigate the effects of a typical solar park on the microclimate and ecosystem processes, we measured soil and air microclimate, vegetation and greenhouse gas emissions for twelve months under photovoltaic (PV) arrays, in gaps between PV arrays and in control areas at a UK solar park sited on species-rich grassland. Our results show that the PV arrays caused seasonal and diurnal variation in air and soil microclimate. Specifically, during the summer we observed cooling, of up to 5.2 °C, and drying under the PV arrays compared with gap and control areas. In contrast, during the winter gap areas were up to 1.7 °C cooler compared with under the PV arrays and control areas. Further, the diurnal variation in both temperature and humidity during the summer was reduced under the PV arrays. We found microclimate and vegetation management explained differences in the above ground plant biomass and species diversity, with both lower under the PV arrays. Photosynthesis and net ecosystem exchange in spring and winter were also lower under the PV arrays, explained by microclimate, soil and vegetation metrics. These data are a starting point to develop understanding of the effects of solar parks in other climates, and provide evidence to support the optimisation of solar park design and management to maximise the delivery of ecosystem services from this growing land use.