This resource aims to guide informed decisions by landowners, investors, planners, and government officials in considering the planning and siting of grid-scale solar systems in Pennsylvania. The intent is to balance and promote the goals of sustainable income-generation and protection of water, soil, and valuable agricultural land resources.
This study focused on the photosynthetic photon flux density and employed an all-climate solar spectrum model to calculate the photosynthetic photon flux density accurately on farmland partially shaded by solar panels and supporting tubes. The researchers also described an algorithm for estimating the photosynthetic photon flux density values under solar panels, which were then validated using photosynthetic photon flux density sensors. The calculation formula enables farmers to evaluate the economic efficiency of a system before introducing it.
This life cycle assessment study investigates the environmental performance of sheep-based agrivoltaic systems and concludes that agrivoltaic systems are superior to conventional ground-mounted PV systems because they have dual purposes and reduce the environmental impacts associated with producing food and electricity.
The purpose of this paper is to systematically synthesize the potential ecosystem services of agrivoltaics and summarize how these development strategies could address several United Nations Sustainable Development Goals. Led by Agrisolar Clearinghouse partner Leroy Walston, researchers focused on four broad potential ecosystem services of agrivoltaics: (1) energy and economic benefits; (2) agricultural provisioning services of food production and animal husbandry; (3) biodiversity conservation; and (4) regulating ecosystem services such ascarbon sequestration and water and soil conservation.
In this article, researchers argue that the divide between food and energy production groups can be lessened with the co-generation of food and energy on the same land. This paper demonstrates the importance of different light spectra, and show that those spectra, if optimized in terms of their utilization, could lead to sustainable and more efficient food and energy systems.
This research was conducted to investigate the roasting capacity of a batch-type directly solar radiated roasting system for the decentralized processing of coffee using solar energy. Experimental results revealed that the roaster was capable of roasting a batch of 2 kg coffee beans in 20, 23, and 25 minutes subjected to light roasts, medium roasts, and dark roasts, respectively. The payback period of the solar roaster unit was estimated to be 1038 working sunshine hours, making it viable for commercialization.
This research details the design of a solar coffee roaster in rural Peru, and presents the result of experimental roasts. Researchers also discuss future improvements that could be made to the design.
This paper applied an open-source spatial-based model to quantify the solar power generation (the ground-mounted photovoltaic panels) for the southern regions of Poland and Ukraine. Researchers then compared economic indicators of the solar power generation and the crop production projects for rain-fed land. The analysis revealed that the PV projects have higher net present value, but lower profitability index compared to the crop production.
The main goal of this research was to find optimal management strategies for sheep flocks kept on solar arrays. Researchers studied flock health and productivity parameters, as well as forage production and quality in a multi-year colloborative trial on a 54-acre solar array adjacent to Cornell University campus. The study concluded that stocking densities of 12, 16, and 20 sheep per acre were successful in maintaining the vegetation within solar arrays, while grazing densities between 12 and 16 sheep per acre may be more complementary for flock health and condition.