Researchers analyzed and compared the costs for an agrivoltaic system with the cost of plastic covers for blueberry crops in Chile. They also introduce a metric to calculate the price for covering cropland with an agrivoltaic system.

The purpose of this paper is to systematically synthesize the potential ecosystem services of agrivoltaics and summarize how these development strategies could address several United Nations Sustainable Development Goals. Led by Agrisolar Clearinghouse partner Leroy Walston, researchers focused on four broad potential ecosystem services of agrivoltaics: (1) energy and economic benefits; (2) agricultural provisioning services of food production and animal husbandry; (3) biodiversity conservation; and (4) regulating ecosystem services such ascarbon sequestration and water and soil conservation.

In this article, researchers argue that the divide between food and energy production groups can be lessened with the co-generation of food and energy on the same land. This paper demonstrates the importance of different light spectra, and show that those spectra, if optimized in terms of their utilization, could lead to sustainable and more efficient food and energy systems.

This research was conducted to investigate the roasting capacity of a batch-type directly solar radiated roasting system for the decentralized processing of coffee using solar energy. Experimental results revealed that the roaster was capable of roasting a batch of 2 kg coffee beans in 20, 23, and 25 minutes subjected to light roasts, medium roasts, and dark roasts, respectively. The payback period of the solar roaster unit was estimated to be 1038 working sunshine hours, making it viable for commercialization.

This research details the design of a solar coffee roaster in rural Peru, and presents the result of experimental roasts. Researchers also discuss future improvements that could be made to the design.

This paper applied an open-source spatial-based model to quantify the solar power generation (the ground-mounted photovoltaic panels) for the southern regions of Poland and Ukraine. Researchers then compared economic indicators of the solar power generation and the crop production projects for rain-fed land. The analysis revealed that the PV projects have higher net present value, but lower profitability index compared to the crop production.

The main goal of this research was to find optimal management strategies for sheep flocks kept on solar arrays. Researchers studied flock health and productivity parameters, as well as forage production and quality in a multi-year colloborative trial on a 54-acre solar array adjacent to Cornell University campus. The study concluded that stocking densities of 12, 16, and 20 sheep per acre were successful in maintaining the vegetation within solar arrays, while grazing densities between 12 and 16 sheep per acre may be more complementary for flock health and condition.

Emma W. Kampherbeek, Laura E. Webb, Beth J. Reynolds, Seeta A. Sistla,
Marc R. Horney, Raimon Ripoll-Bosch, Jason P. Dubowsky, Zachary D. McFarlane

A study led by Emma Kampherbeek (Wageningen University & Research, the Netherlands)  highlights multiple benefits of coupling solar energy production to sheep grazing in rangeland systems. This project investigated how sheep use solar arrays as a forage site and the impacts of solar array presence on forage quality in a California Central Coast site with a Mediterranean climate. Sheep with access to solar panels graze more than when they are on nearby native rangeland without an array.  This increased foraging behavior is likely driven by a combination of the protection that the array provides the sheep from weather conditions, which increases grazing time, as well as increased protein content and digestibility of forage with the array footprint.

Researchers in this study monitored soil and air temperature, humidity, wind speed, and incident radiations at a full sun site, as well as at two agrivoltaic systems with different densities of photovoltaic panels. They recorded the findings during three seasons (winter, spring, and summer) with both short cycle crops (lettuce and cucumber) and a long cycle crop (durum wheat). The researchers concluded that little adaptations in cropping practices should be required to switch from an open cropping to an agrivoltaic cropping system and attention should mostly be focused on mitigating light reduction and on selection of plants with a maximal radiation use efficiency in these conditions of fluctuating shade.

Researchers in this study used experimental panels to simulate the effects of solar development on microhabitats and annual plant communities present on gravelly bajada and caliche pan habitat, two common habitat types in California’s Mojave Desert. They evaluated soils and microclimatic conditions and measured community response under panels and in the open for seven years. The study’s results demonstrate that the ecological consequences of solar development can vary over space and time and suggest that a nuanced approach will be needed to predict impacts across desert landforms differing in physical characteristics.