The world’s total annual electrical and electronic waste (e-waste) reached a record of 41.8 million metric tonnes in 2014. Annual global PV panel waste was 1,000 times less in the same year. Yet by 2050, the PV panel waste added annually could exceed 10% of the record global e-waste added in 2014. As the analysis contained in this report shows, the challenges and experiences with e-waste management can be turned into opportunities for PV panel waste management in the future. As the global PV market increases, so will the volume of decommissioned PV panels. At the end of 2016, cumulative global PV waste streams are expected to have reached 43,500-250,000 metric tonnes. This is 0.1%-0.6% of the cumulative mass of all installed panels (4 million metric tonnes). Meanwhile, PV waste streams are bound to only increase further. Given an average panel lifetime of 30 years, large amounts of annual waste are anticipated by the early 2030s. These are equivalent to 4% of installed PV panels in that year, with waste amounts by the 2050s (5.5-6 million tonnes) almost matching the mass contained in new installations (6.7 million tonnes). Growing PV panel waste presents a new environmental challenge, but also unprecedented opportunities to create value and pursue new economic avenues. These include recovery of raw material and the emergence of new solar PV end-of-life industries. Sectors like PV recycling will be essential in the world’s transition to a sustainable, economically viable and increasingly renewables-based energy future. To unlock the benefits of such industries, the institutional groundwork must be laid in time to meet the expected surge in panel waste.

Responsible and cost-effective dissolution of photovoltaic (PV) system hardware at the end of the performance period has emerged as an important business and environmental consideration. Alternatives include extending the performance period and existing contracts for power purchase, lease, and utility interconnect; refurbishing the plant by correcting any deficiencies; repowering the plant with new PV modules and inverters; or decommissioning the plant and removing all the hardware from the site. Often key decisions are made very early in the project development and might require decommissioning by some certain date after the end of a power purchase agreement. To “abandon in place” is not an alternative acceptable to landowners and regulators, so any financial prospectus should include costs associated with decommissioning, even if those costs are deferred by extending operations, refurbishment, or repowering. Decommissioning costs are driven by regulations regarding the handling and disposal of waste, with reuse and recycling of PV modules and other components preferred as a way to reduce both costs and environmental impact. Each alternative is discussed with order-of-magnitude costs, and recommendations are provided considering site-specific details of that situation, such as estimated costs to refurbish or repower, projected revenue from continued operations, and tax considerations. Decisions affecting alternatives at the end of the performance period for a PV plant are often limited by local regulations regarding permitting and land-use planning and state or federal regulations regarding handling and disposal of waste. Decisions regarding the final disposition of a system are often made much earlier—in the development of contracts, permits, and agreements regarding construction of the plant in the first place. Because a main driver of the PV market is concern about environmental sustainability, everyone in the PV industry—from PV module manufacturers, to project developers, to project owners and financiers, to designers and specifiers, to O&M providers—needs to ensure that liabilities such as hazardous materials are avoided and that the provisions made at the end of the performance period extract the most economic value and entail the least environmental impact as possible—or at least comply with all environmental regulations. In many cases, the site control, utility interconnection, and civil improvements such as access roads and stormwater drainage will have a high value and could justify repowering with new PV modules and inverters.

The North Caroline Department of Environmental Quality (DEQ or Department) and the Environmental Management Commission (EMC) found that solar panels are not expected to pose a significant environmental risk to the State while in operation. They also recommended that additional time was needed to further study the feasibility and advisability of establishing a statewide standard to ensure adequate financial resources are available for the decommissioning of utility-scale solar facilities, also referred to as financial assurance (FA). It was not deemed necessary at that time because the current fleet of solar facilities would not reach the end of their useful life for about 10 years. The Department recommended that a future study on FA involve stakeholders and participation from the North Carolina Utilities Commission (NCUC), address salvage values and incentives to reuse, repower, or recycle end-of-life photovoltaic modules, and describe market forces necessary to drive the recommended end-of-life management options. North Carolina is one of the nation’s leaders for the number of solar facilities supplying power to the electricity grid. North Carolina currently has about 5,100 megawatts(MW) of grid-connected solar power. This power is supplied by more than 660 facilities that are greater than 1 MW in size. These facilities are located in 79 counties, and the land is generally leased to the solar developer by the landowner. Based on the last three years of data obtained from the Energy Information Administration, an average of approximately 50 facilities are expected to be added in North Carolina per year, providing an additional 500 MW to the grid per year in total. Facilities are expected to get larger in the future, with more facilities expected to be greater than 5 MW.

Delaware River Solar (“DRS”) proposes to build multiple photovoltaic (PV) solar facilities (each a “Solar Facility”) throughout New York State under New York State’s Community Solar initiative. Each Solar Facility is planned to have a nameplate capacity of approximately 2 megawatts (MW) alternating current (AC) and be built on a 10-12 acre parcel of private land (each a “Facility Site”). This Decommissioning Plan (“Plan”) provides an overview of activities that will occur during the decommissioning phase of a Solar Facility, including; activities related to the restoration of land, the management of materials and waste, projected costs, and a decommissioning fund agreement overview. This decommissioning plan is based on current best management practices and procedures. This Plan may be subject to revision based on new standards and emergent best management practices at the time of decommissioning. Permits will be obtained as required and notification will be given to stakeholders prior to decommissioning.

As local governments develop solar regulations and landowners negotiate land leases, it is important to understand the options for decommissioning solar panel systems and restoring project sites to their original status. The New York Solar Energy Research and Development Authority (NYSERDA) provide information for local governments and landowners on the decommissioning of large-scale solar panel systems through the topics of decommissioning plans and costs and financial and non-financial mechanisms in land-lease agreements.

The local implementation of renewable energy projects often faces opposition. The landscape transformation that comes with the transition to renewables is one of the key counter-arguments of local stakeholders. In this article, we examine the relation between research on ‘designing landscape transformations’ and ‘acceptance of renewable energy projects’; whether and how these bodies of knowledge may complement each other. The systematic literature review revealed that acceptance studies and landscape design studies describe 25 similar factors that influence acceptance. The majority of these factors are somewhat general in nature, such as economic benefits, visual impact, and aesthetics. Additionally, we found 45 unique factors in acceptance studies and sixteen unique factors in landscape design studies. Furthermore, we found differences in distribution of factors when categorizing and comparing them by means of two conceptual frameworks. Moreover, the emphasis in peer-reviewed literature differs significantly from laypersons, which is challenging the current research agenda on landscape transformation and acceptance of renewable energy. The findings and the knowledge lacunas provide clear avenues for a shared research agenda. Future research needs to examine the influence of involving landscape designers on the acceptance of renewable energy projects and the effects of more inclusive design processes on factors such as trust.

This report examines the NREL Innovative Solar Practices Integrated with Rural Economies and Ecosystems (InSPIRE) project, which was funded by the U.S. Department of Energy (DOE) Solar Energy Technologies Office (SETO) starting in 2015. Over the past seven years, the project’s multiple phases have studied the colocation of solar with crops, grazing cattle or sheep, and/or pollinator-friendly native plants, and the resulting ecological and agricultural benefits.

According to InSPIRE research, there are five central elements that lead to agrivoltaic success:

  • Climate, Soil, and Environmental Conditions – The location must be appropriate for both solar generation and the desired crops or ground cover. Generally, land that is suitable for solar is suitable for agriculture, as long as the soil can sustain growth.
  • Configurations, Technologies, and Designs – The choice of solar technology, the site layout, and other infrastructure can affect everything from how much light reaches the solar panels to whether a tractor, if needed, can drive under the panels.
  • Crop Selection and Cultivation Methods, Seed and Vegetation Designs, and Management Approaches – Agrivoltaic projects should select crops or ground covers that will thrive in the local climate and under solar panels, and that are profitable in local markets.
  • Compatibility and Flexibility – Agrivoltaics should be designed to accommodate the competing needs of solar owners, solar operators, and farmers or landowners to allow for efficient agricultural activities.
  • Collaboration and Partnerships – For any project to succeed, communication and understanding between groups is crucial.

Successes and failures of prior agrivoltaic projects will inform new innovations as agrivoltaic projects continue to be deployed globally. This report represents a synthesis of lessons learned from agrivoltaic research field sites located across the United States as part of the InSPIRE project. The projects considered represent a diverse mix of geographies, agrivoltaic activities, and technology configurations. In this report, we have provided a list of features that contribute to the success of agrivoltaic installations and research projects, with partnerships playing a crucial role in both. The researchers suggest future research activities that align with these core principles as well as other approaches to grow agrivoltaic research efforts globally.

Biological pest control and pollination are vital ecosystem services that are usually studied in isolation, given that they are typically provided by different guilds of arthropods. Hoverflies are an exception, as larvae of many aphidophagous species prey upon agriculturally important aphid pests, while the adults feed on floral nectar and pollen and can be effective pollinators of important agricultural crops. While this is widely known, the concurrent provisioning of pest control and pollination by aphidophagous hoverflies has never been studied. Here, we compared the potential of two aphidophagous hoverflies, Eupeodes corollae and Sphaerophoria rueppellii to concurrently control the aphid Myzus persicae and improve pollination (measured as seed set and fruit weight) in sweet pepper (Capsicum annuum). In a first semi-field experiment, aphid populations were reduced by 71 and 64% in the E. corollae and S. rueppellii treatments, respectively, compared to the control. In a second experiment, the aphid population reduction was 80 and 84% for E. corollae and S. rueppellii, respectively. Fruit yield in aphidinfested plants, was significantly increased by 88 and 62% for E. corollae and S. rueppellii, respectively, as compared to the control. In a separate trial, where the plants were not infested with aphids, yield increased by 29 and 11% for E. corollae and S. rueppellii, respectively, even though these differences were not statistically significant. The increase in seed set in the hoverfly treatments was statistically significant in both pollination experiments, i.e. independently of the presence of aphids. These results demonstrate, for the first time, that aphidophagous hoverflies can concurrently provide pest control and pollination services.

As the solar energy industry grows, many hundreds of thousands of acres of land will be transformed into solar panel facilities. With this large change in land use, there is the opportunity to promote biodiversity and support pollinators by using pollinator-friendly management practices at the solar facilities. This paper explores the ecological and economic effects of a pollinator-friendly solar facility compared to a turfgrass solar facility. The researcher hypothesized that a pollinator-friendly solar facility would be functionally equivalent in pollinator support and overall insect diversity to a pollinator-friendly non-solar field and that both sites would have far greater pollinator support and insect diversity than a turfgrass solar field. To test this hypothesis, vegetation and insect sampling were conducted and the resulting data were analyzed for differences in vegetative and insect diversity and pollinator abundance at a pollinator-friendly solar facility, a turfgrass solar facility, and a reference non-solar pollinator-friendly field. The diversity analysis revealed that the pollinator-friendly solar site was overall functionally equivalent to the non-solar pollinator-friendly site and the turfgrass solar site had low insect and vegetative diversity, but high insect abundance. Photovoltaic solar panel energy production is negatively affected by high temperatures. Therefore, to maximize energy production and promote biodiversity native forbs may be incorporated into a solar facility landscape to cool the solar panels by the cooling effect of transpiration and produce more energy than a traditional turfgrass landscaped solar facility throughout the growing season. Overall, this study supports the idea that pollinator-friendly landscapes could be more economically viable, as pertaining to energy output, and more ecologically beneficial compared to turfgrass. More research is necessary to further investigate and test the patterns seen at only these two solar sites, but these results are encouraging for the future widespread implementation of pollinator-friendly management practices in solar facilities across the Mid-Atlantic.

The rapid expansion of solar and wind energy projects is raising questions of energy justice. Some scholars argue that solar and wind project development could burden under-resourced communities with negative impacts such as environmental harm and reduced access to resources. Conversely, other scholars argue that project development could be a boon to under-resourced communities, providing local economic and cultural benefits. Here, we analyze the drivers of solar and wind project siting patterns in the United States and explore their potential energy justice implications. We find that siting patterns are driven primarily by technoeconomic factors, especially resource quality and access to open undeveloped spaces. These technoeconomic factors channel projects into sparsely populated rural areas and, to a lesser extent, areas with lower income levels. We avoid simplifying assumptions about the broad justice implications of these siting patterns and explore our results from multiple perspectives.