In this paper, the researchers applied the InVEST modeling framework to investigate the potential response of four ecosystem services (carbon storage, pollinator supply, sediment retention, and water retention) to native grassland habitat restoration at 30 solar facilities across the Midwest United States.
Colloidal quantum dots (QDs) are nanometer-sized semiconductor crystals grown via low-cost solution processing routes for a wide array of applications encompassing photovoltaics, light-emitting diodes (LEDs), electronics, photodetectors, photocatalysis, lasers, drug delivery, and agriculture. A comprehensive technoeconomic cost analysis of perovskite quantum dot optoelectronics is reported. Using economies-of-scale considerations based on price data from prominent materials suppliers, we have highlighted that increased QD synthesis yield, solvent recycling, and synthesis automation are critical to market adoption of this technology and driving quantum dot film fabrication costs down from >$50/m^2 to ∼$2−3/m^2
Decomposition models of solar irradiance estimate the magnitude of diffuse horizontal irradiance from global horizontal irradiance. These two radiation components are well-known to be essential for the prediction of solar photovoltaic systems performance. In open-field agrivoltaic systems, that is the dual use of land for both agricultural activities and solar power conversion, cultivated crops receive an unequal amount of direct, diffuse and reflected photosynthetically active radiation (PAR) depending on the area they are growing due to the non-homogenously shadings caused by the solar panels installed (above the crops or vertically mounted). It is known that PAR is more efficient for canopy photosynthesis under conditions of diffuse PAR than direct PAR per unit of total PAR. For this reason, it is fundamental to estimate the diffuse PAR component in agrivoltaic systems studies to properly predict the crop yield.
This resource discusses components of managed grazing such as: historical herbivore effects on grasslands, limitations of past research, managing grazing to restore ecological function and management tactics used to achieve sustainable finance goals. All of these considerations relate to aspects of developing AgriSolar operations that include grazing and a need for grazing strategies. Scientists partnering with farmers and ranchers around the world who have improved their land resource base and excel financially have documented how such land managers produce sound environmental, social, and economic outcomes. Many of these producers have used Adaptive Multi-Paddock (AMP) grazing management as a highly effective approach for managing their grazing lands sustainably.
Solar electricity from solar parks in rural areas are cost effective and can be deployed fast therefore play an important role in the energy transition. The optimal design of a solar park is largely affected by income scheme, electricity transport capacity, and land lease costs. Important design parameters for utility-scale solar parks that may affect landscape, biodiversity, and soil quality are ground coverage ratio, size, and tilt of the PV tables. Particularly, low tilt PV at high coverage reduces the amount of sunlight on the ground strongly and leads to deterioration of the soil quality over the typical 25-year lifetime. In contrast, vertical PV or an agri-PV designed fairly high above the ground leads to more and homogeneous ground irradiance; these designs are favored for pastures and croplands. In general, the amount and distribution of ground irradiance and precipitation will strongly affect which crops can grow below and between the PV tables and whether this supports the associated food chain. As agrivoltaics is the direct competition between photosynthesis and photovoltaics. Understanding when, where and how much light reaches the ground is key to relate the agri-PV solar park design to the expected agricultural and electricity yields. We have shown that by increasing the minimum height of the system, decreasing the size of the PV tables and decreasing the coverage ratio, the ground irradiance increases, in particular around the gaps between the tables. The most direct way of increasing the lowest irradiance in a solar park design is to use semi-transparent PV panels, such as the commercially available bifacial glass-glass modules. In conclusion: we have shown that we can achieve similar ground irradiance levels in an east- and west-facing design with 77% ground coverage ratio as is achieved by a south-facing design at 53% coverage.
As an answer to the increasing demand for photovoltaics as a key element in the energy transition strategy of many countries—which entails land use issues, as well as concerns regarding landscape transformation, biodiversity, ecosystems and human well-being—new approaches and market segments have emerged that consider integrated perspectives. Among these, agrivoltaics is emerging as very promising for allowing benefits in the food–energy (and water) nexus. Demonstrative projects are developing worldwide, and experience with varied design solutions suitable for the scale up to commercial scale is being gathered based primarily on efficiency considerations; nevertheless, it is unquestionable that with the increase in the size, from the demonstration to the commercial scale, attention has to be paid to ecological impacts associated to specific design choices, and namely to those related to landscape transformation issues. This study reviews and analyzes the technological and spatial design options that have become available to date implementing a rigorous, comprehensive analysis based on the most updated knowledge in the field, and proposes a thorough methodology based on design and performance parameters that enable us to define the main attributes of the system from a trans-disciplinary perspective. The energy and engineering design optimization, the development of new technologies and the correct selection of plant species adapted to the PV system are the areas where the current research is actively focusing in APV systems. Along with the continuous research progress, the success of several international experiences through pilot projects which implement new design solutions and use different PV technologies has triggered APV, and it has been met with great acceptance from the industry and interest from governments. It is in fact a significant potential contribution to meet climate challenges touching on food, energy, agriculture and rural policies. Moreover, it is understood—i.e., by energy developers—as a possible driver for the implementation of large-scale PV installations and building integrated agriculture, which without the APV function, would not be successful in the authorization process due to land use concerns. A sharp increase is expected in terms of number of installations and capacity in the near future. Along this trend, new concerns regarding landscape and urban transformation issues are emerging as the implementation of APV might be mainly focused on the efficiency of the PV system (more profitable than agriculture), with insufficient attention on the correct synergy between energy and food production. The study of ecosystem service trade-offs in the spatial planning and design for energy transition, to identify potential synergies and minimize trade-offs between renewable energy and other ecosystem services, has been already acknowledged as a key issue for avoiding conflicts between global and local perspectives. The development of new innovative systems (PV system technology) and components (photovoltaic devices technology) can enhance the energy performance of selected design options for APV greenhouse typology.
This report shows industrial processes for comprehensive solar integration. The paper discusses solar thermal energy-integration methods, cost estimations of system components and solar fractions. Multiple case study examples relevant to the dairy and biothermal industry are presented. Each case study includes three scenarios, and the results of each of those are discussed here.
The purpose of this study was to describe the development of a solar-powered submersible pump system without the use of batteries in agriculture. The submersible pump system used a solar drive to run it. The implementation uses a combination of solar trackers, water storage tanks, power converters, and stabilizers. The results of the study explained that solar trackers increased the efficiency of solar units that track the sun throughout the day and convert solar energy into DC electrical power.
System Without the Use of Batteries in Agriculture
This study discusses the analytics of tracking and backtracking for PV plants with various trackers after being converter to agrisolar plants or operations. Some of the details included in this report are: astronomical considerations, hedgerow crop height, tracking axis’s with and without crops, daily incidental radiation and solar declination, among other topics. These results could be used for implementing new strategies in future agrisolar operations.
This article discusses the mechanism of local micro-climate changes caused by fishery complementary photovoltaic (FPV) power plants to illustrate the impact of FPV power plants in a lake on the environment. It includes details about comprehensive albedo decreases relative to free water surface, water energy change and air vapor pressure deficits. The article also reveals that the FPV panels had a heating effect on the ambient environment, and that the range of this effect was related to water depth.