This NCAT ATTRA publication explains how to maintain irrigation pumps, motors, and engines for peak efficiency. The publication includes descriptions and diagrams of recommended installations, checklists for maintenance tasks, and a troubleshooting guide. Each system component is treated separately and maintenance tasks are broken down by how frequently they need to be done.

This publication by Penn State Extension provides energy saving tips for Dairy Farmers. Included in this document are tips relating to variable speeds on vacuum pumps, pre coolers for cooling milk, tuning vacuum systems and heat recovery from milk-cooler compressors.

This Wisconsin Public Service publication concerns high-volume low-speed (HVLS) fans as a ventilation option for dairy and livestock farmers. The publication includes information on air velocity related to cow comfort, air velocity obstructions and diagrams showing air velocities in feet per minute.

This NCAT ATTRA publication describes the installation of the heat recovery equipment and provides an analysis of data on humidity and temperature in the winter growing tunnels used in the project. The publication includes details on the trial of a heat recovery ventilation (HRV) system as an alternative to traditional ventialtion in tunnel production. The installation process of the heat recovery equipment is provided.

The article concerns the performance of a solar water heater with gas backup and an air-source heat-pump water-heater at a dairy farm in Ireland. The publication discusses the heater’s affect on energy efficiency and it’s relation to renewable energy, emission and target interactions as identified in the document.

This guide is designed as a resource for those who want to develop community solar projects, from community organizers or solar energy advocates to government officials or utility managers. By exploring the range of incentives and policies while providing examples of operational community solar projects, this guide will help communities to plan and implement successful local energy projects. In addition, by highlighting some of the policy best practices, this guide suggests changes in the regulatory landscape that could significantly boost community solar installations across the country. The information in this guide is organized around three sponsorship models: utility-sponsored projects, projects sponsored by special purpose entities – businesses formed for the purpose of producing community solar power, and non-profit sponsored projects. The guide addresses issues common to all project models, as well as issues unique to each model. This guide focuses on projects designed to increase access to solar energy and to reduce up-front costs for participants. The secondary goals met by many Community Solar projects include: Improved economies of scale, Optimal project siting, Increased public understanding of solar energy, Generation of local jobs, Opportunity to test new models of marketing, project financing and service delivery.

With more than 600,000 miles of operational transmission lines throughout the U.S., there is a significant opportunity for investments in conservation. By establishing native vegetation in these project corridors, developers and private landowners can add value to the rights of way used by electric transmission infrastructure. The size of prairie strips and the goal of providing conservation outcomes allows landowners and developers to work together to adopt this practice on private farmland within transmission line corridors. Farmers and project developers contemplating the adoption of prairie strips on private lands within transmission line corridors should also note that the width of an individual prairie strip may be adjusted to accomplish the purpose of the practice, prairie strips may not exceed 25 percent of the cropland area per field, developers could form agreements with participating and/or surrounding landowners to manage this vegetation, the Federal Energy Regulatory Commission has vegetative height requirements depending on transmission line voltage and type, and owners of public land may also qualify for cost-share for prairie strips through CRP if the land is being farmed.

This manual covers the business models or pathways through which electric cooperatives can deploy utility-scale solar PV installations to meet their renewable energy goals. In this report, they define utility-scale solar PV installations for the electric cooperative sector as being 1 MW or larger—to account for the interest they have witnessed in the sector as well as the smaller scale of operations of cooperative utilities. However, the analysis and discussion presented in this manual, as well as the models used herein, apply to installations as small as 0.25 MW. Electric cooperatives’ interest in solar energy has risen in recent years. Although not-for-profit co-ops are not typically eligible for tax benefits, they often seek a “taxable partner” for solar and wind projects, either through a power-purchase-agreement or through a shared ownership model, such as a tax-equity flip or a tax-lease-buyback project. The ITC extension reduces pressure for planners to implement solar projects in 2016 and allows for more careful planning. This is especially important for co-ops that are planning community solar projects, because it allows them to pursue a multi-year plan and avoid trying to cram everything into 2016. Solar costs are expected to continue falling as the technology and the industry continue to mature. The steep rate of cost savings seen in recent years will likely slow, however. Solar Power Purchase Agreements utilizing various tax incentives have already fallen under $60 per MWh in many parts of the US—and below $40 per MWh in some areas. With the continued cost reduction, more parts of the country will start to see prices for large scale projects in the $50 to $60 per MWh range. When combined with falling costs and industry maturity of large scale energy storage, this may open opportunities for investment in carbon-free generation technologies as replacement for more traditional sources of energy, especially peaking plants. The new law will also provide a measure of stability for the development of wind projects over the next four years. Both wind and solar will play an important role in developing state implementation plans to meet the 2015 EPA Clean Power Plan.

Modifications to the surface albedo through the deployment of cool roofs and pavements (reflective materials) and photovoltaic arrays (low reflection) have the potential to change radiative forcing, surface temperatures, and regional weather patterns. In this work we investigate the regional climate and radiative effects of modifying surface albedo to mimic massive deployment of cool surfaces (roofs and pavements) and, separately, photovoltaic arrays across the United States. The researchers use a fully coupled regional climate model, the Weather Research and Forecasting (WRF) model, to investigate feedbacks between surface albedo changes, surface temperature, precipitation and average cloud cover. With the adoption of cool roofs and pavements, domain-wide annual average outgoing radiation increased by 0.16 ± 0.03 W m−2 (mean ± 95% C.I.) and afternoon summertime temperature in urban locations was reduced by 0.11–0.53 ◦C, although some urban areas showed no statistically significant temperature changes. In response to increased urban albedo, some rural locations showed summer afternoon temperature increases of up to +0.27 ◦C and these regions were correlated with less cloud cover and lower precipitation. The emissions offset obtained by this increase in outgoing radiation is calculated to be 3.3 ± 0.5 Gt CO2 (mean ± 95% C.I.). The hypothetical solar arrays were designed to be able to produce one terawatt of peak energy and were located in the Mojave Desert of California. To simulate the arrays, the desert surface albedo was darkened, causing local afternoon temperature increases of up to +0.4 ◦C. Due to the solar arrays, local and regional wind patterns within a 300 km radius were affected. Statistically significant but lower magnitude changes to temperature and radiation could be seen across the domain due to the introduction of the solar arrays. The addition of photovoltaic arrays caused no significant change to summertime outgoing radiation when averaged over the full domain, as interannual variation across the continent obscured more consistent local forcing.

While solar facilities are a viable source of clean energy with many economic opportunities available to developers, landowners, and local communities, their recent deployment has led to a growing recognition of potential land use conflicts. The declining technology costs, tax breaks, financial incentives, and affordability of rural lands have been the main drivers of the recent development of solar facilities across Virginia. However, as these facilities grow larger and more prevalent, they will become an increasingly important component of local land use patterns in many parts of rural Virginia. Accordingly, proper land use planning serves a critical role in ensuring that Virginia successfully meets future clean energy goals while also promoting sustainable and efficient land use practices. Analyzing the ongoing land use impacts of utility-scale solar development, establishing a process for tracking future land use patterns, and providing guidance to consider the best land use practices is the primary purpose of this plan. The goal of this plan is not to undermine the opportunity and potential of solar energy. Instead, this plan seeks to inform solar energy development policies through a land use planning perspective to promote the sustainable development of solar facilities. The recommendations of this plan are intended for the Virginia Department of Mines, Minerals, and Energy and are informed by the results of this research. However, the findings and recommendations for this plan are also informative and useful for a variety of stakeholders. The sustainable development of solar energy facilities in Virginia will ultimately be a collaborative process and the following recommendations are intended to complement the ongoing work of numerous stakeholders across the state.