With the coming of the 21st century in the U.S., reliance on fossil fuels, in particular coal, decreased while renewable energy sources increased their contribution to the U.S. energy portfolio. The factors behind this emerging trend toward a decreased reliance on coal are many, including economic as well as policy goals. Nationally, support is strong for the general transition to renewable energy, but this support can decline at the local level particularly if renewable energy is perceived as have negative local economic impact, impeding implementation. However, some look at this as part of a transition to a new economic power structure. Due to a lack of research on identifying public preferences for energy production in the United States, the authors conducted a national survey to identify drivers and barriers of acceptance of different types of electrical energy production.
Solar siting is advancing rapidly in New York to meet the state’s climate goals of 70% renewable energy by 2030 and 100% clean energy by 2040, and much of that development is targeted towards farmland. However, with the right policies, incentives and research, solar development can avoid or minimize the most serious negative impacts on the availability and viability of New York’s best farmland and the strength of its agricultural economy and food security. Implementing the smart solar siting strategies recommended in this report can help farmers and agricultural communities capitalize on the benefits of solar development, explore new markets, participate in cutting-edge research partnerships, and continue growing the food we need now and in the future, all while combatting climate change.
Given the proven technical, economic, and environmental advantages provided by agrivoltaic systems, increased proliferation is anticipated, which necessitates accounting for the nuances of community resistance to solar development on farmland.
This paper provides a conceptual exploration of how a proposed framework can guide decision making for solar development across multiple scales and settings, while also illuminating the potential barriers and bottlenecks that may limit the potential of solar energy development to occur in scales and forms that receive community acceptance and at the pace necessary to address the greenhouse gas emissions currently contributing to the rapidly changing global climate.
This report describes a solar-powered pneumatic grain/seed cleaning system. The report stats that a solar powered pneumatic grain/seed cleaning system was developed with specific functional, structural and operational design parameters. The developed pneumatic cleaner was tested for garden pea, bottle gourd, sponge gourd and radish seed lots of different impurity levels. It was found that the processed lot achieved more than 99% physical purity irrespective of type of seed and impurity levels and the cleaning efficiency of the system was more than 96%.
This report describes the design and use of a solar-powered fruit and vegetable grader. This study demonstrates one of the innovative, agricultural engineering features that can be potentially used in the context of various agrisolar operations that include crops.
The identified concerns in this study can be used to refine the technology to increase adoption among farmers and to translate the potential of agrivoltaics to address the competition for land between solar PV and agriculture into changes in solar siting, farming practice, and land-use decision-making.
This report describes a low-cost, solar-powered, air-inflated grain dryer. Moisture levels measured during harvest and storage can fluctuate based on the design and efficiency of grain dryers. These solar-powered grain dryers have been shown to be effective in optimizing the moisture levels during the harvest process. These innovative technologies can possibly be used in various contexts of agrisolar operations that include crops.
This report describes the design and construction of a solar photovoltaic food dryer. The hybrid solar-energy dryer uses PV panels to power the heating element coil and charging battery which includes a storage energy system used to study drying behavior. Solar-powered dryers could be effective technologies to use in future agrisolar operations that include grain or other crops.
This report describes the efficacy of a solar-powered cooler in Kenya. In addition to keeping the produce cooler, it also maintains the carbon dioxide and oxygen balance and reduces spoilage. These conclusions were drawn from variations of storage conditions and climate conditions of the beans in the study.