This document addresses that a wavelength-selective greenhouse could be a promising agrivoltaic system if it can provide an optimal balance between the microclimate suitable for plants and increasing energy production, an ambitious future goal being an energy independent and combined fully automated arboretum.
The aim of this research is to establish how relevant agrivoltaics can be in terms of energy production at regional scale. For this purpose, a methodology is developed to: (i) identify greenhouses using cartographic information systems, (ii) estimate how much of these areas could be covered by solar photovoltaic panels without decreasing the crops production, thus, estimating the optimal photovoltaic cover ratio for different type of crops under different solar conditions by developing a novel set of equations and (iii) evaluate the corresponding photovoltaic power and production.
In this work, researchers evaluate the effects of wavelength-selective cutoffs of visible and near-infrared (biologically active) radiation using transparent photovoltaic (TVP) absorbers on the growth of three diverse, representative, and economically important crops: petunia, basil, and tomato. The results identify crop-specific design requirements that exist for TPV harvester transmission and the necessity to maximize transmission of photosynthetically active radiation to create the most broadly applicable TPV greenhouse harvesters for diverse crops and geographic locations. They determine that the deployment of 10% power conversion efficiency plant-optimized TPVs over approximately 10% of total agricultural and pastureland in the U.S. would generate 7 TW, nearly double the entire energy demand of the U.S.
In this study, researchers sought to characterize crop responses to semi-transparent organic solar cells (ST-OSCs) in greenhouses. Lettuce and tomato crops were grown under three ST-OSCs filters that created different light spectra. Lettuce yield and early tomato development were not negatively affected by the modified light environment. A genomic analysis revealed that lettuce production exhibited beneficial traits involving nutrient content and nitrogen utilization while select ST-OSCs impact regulation of flowering initiation in tomato. These results suggest that ST-OSCs integrated into greenhouses are not only a promising technology for energy-neutral, sustainable and climate-change protected crop production, but can deliver benefits beyond energy considerations.
In this study, a donor:acceptor polymer blend is optimized for its use in laminated devices while matching the optical needs of crops. The study reveals degradation modes undetectable under laboratory conditions such as module delamination, which accounts for 10–20% loss in active area. Among the active layers tested, polymer:fullerene blends are the most stable and position as robust light harvesters in future building-integrated organic photovoltaic systems.
This study evaluates green bean cultivation inside greenhouses with photovoltaic (PV) panels on the roof. Researchers found that the beans adapted to the change in shading by relocating more resources to the stems and leaves. As a result, average yield decreased compared to that of a conventional greenhouse. However, an economic trade-off between energy and crop yield can be achieved with a panel coverage of 10%. The research also provides an experimental framework that could be replicated and used as a decision support tool to identify other crops suitable for solar greenhouse cultivation.
This article examines current literature regarding the application of shading systems alongside crop production, with a focus on photovoltaic panels and greenhouse studies. After reviewing 113 articles, the authors conclude that most studies do justify the co-location of photovoltaic panels and crops. However, more crop-specific research is necessary to determine the optimum percentage of panels that will not reduce agriculture production.
This project developed a new racking/mounting system combined with a new specialized solar panel for low-cost implementation in a hybrid high tunnel greenhouse. The project successfully demonstrated that high value crops can successfully be combined with solar electricity production, even resulting in improvements to yields for certain crops.
Agrivoltaic (APV) systems have emerged as a promising solution to reduce the land-use competition between PV technology and agriculture. Despite its potential, APV is in a learning stage and it is still necessary to devote big efforts to investigate its actual potential and outdoor performance. This work is focused on the analysis of APV systems in agriculture greenhouses at global scale in terms of energy yield. In this study, a novel dual APV model is introduced, projected in four representative locations with a high crop cultivation greenhouse implantation, i.e. El Ejido (Spain), Pachino (Italy), Antalya (Turkey) and Vicente Guerrero (Mexico), and for 15 representative plant cultivars from 5 different important socioeconomic families of crops, i.e. Cucurbitaceae, Fabaceae, Solanacae, Poaceae, Rosaceae. At this stage, semi-transparent c-Si PV technology has been considered due its high efficiency and reliability. The results show that APV systems could have a transparency factor around 68% without significantly affecting the total crop photosynthetic rate. Taking this into account, APV systems would produce an average annual energy around 135 kWh/m2, and values around 200 kWh/m2 under a favorable scenario. This could represent a contribution to the total market share between 2.3% (Mexico) and 6% (Turkey), and up to 100% of the consumption demand of greenhouses equipped with heating and cooling (GSHP), and lighting.
This report discusses the synthesis of four new symmetrical UV-absorbing diimides organic dyes for potential cosensitization process in greenhouse-integrated dye-sensitized solar cells (DSCs). Molecular cosensitization is favorable for manipulating solar radiation through the judicious choice of cosensitizers having complementary absorption spectra. For greenhouse-integrated dye-sensitized solar cells (DSCs), the manipulation of solar radiation is crucial in order to maximize the flow of photosynthetically active radiation (PAR) for the effectual photosynthetic activity of plants; meanwhile, non-PAR is utilized in agrivoltaics for generating electricity.