This paper discusses types of infrastructure commonly found on RE-Powering sites and characterizes where, and to what extent, this infrastructure affects the prospects for site redevelopment.
Community solar programs (also called “shared solar”) offer the economic and environmental benefits of solar to the 49% of Americans without traditional solar access. Such programs are experiencing rapid growth, with active projects across 26 states, up from 6 states in 2010. This market has the potential to grow more than 50-fold from the 110 megawatt (MW) capacity in early 2016 to between 5,500 MW and 11,000 MW by 2020. Previously, it was often uneconomic to develop individual solar projects of less than 2 MW in capacity (2,000 kilowatts [kW]) if they were not tied directly to or net metered with a customer site. With community solar, projects between 50kW and 2,000 kW are often viable because numerous off-site subscribers can purchase shares of a solar installation rather than hosting the installation themselves. By bringing an enormous source of new demand into the market and offering new contracting arrangements to the 51% of Americans who already have potential solar access, community solar is expected to greatly expand the market for mid-sized solar projects. One strong but sometimes overlooked source of suitable sites for community solar are those covered by the U.S. Environmental Protection Agency (EPA) RE-Powering America’s Land Initiative. The RE-Powering Initiative provides data, tools, analysis, case studies, issue briefings, and outreach resources to encourage renewable energy development on contaminated lands, landfills, and mining sites (collectively “RE-Powering sites”). Community solar can overcome financing, contract flexibility, project size, and siting challenges that largely shut out LMI homes, apartments, and small businesses from the solar market, while offering added local economic development benefits if the community solar project itself is located in LMI areas. Because RE-Powering sites are frequently located in or near LMI areas, this paper will explore not only the general potential for developing RE-Powering sites for community solar, but also where siting adjacent to LMI areas extends their benefits. This market intersection is conceptually depicted in Figure 1. Within and outside LMI areas, this paper is intended to support sustainable re-use by characterizing the potential and pointing out the challenges and opportunities of community solar development on RE-Powering sites.