I-Solar, a Real-Time Photovoltaic Simulation Model for Accurate Estimation of Generated Power
Global energy consumption and costs have increased exponentially in recent years, accelerating the search for viable, profitable, and sustainable alternatives. Renewable energy is currently one of the most suitable alternatives. The high variability of meteorological conditions (irradiance, ambient temperature, and wind speed) requires the development of complex and accurate management models for the optimal performance of photovoltaic systems. The simplification of photovoltaic models can be useful in the sizing of photovoltaic systems, but not for their management in real time. To solve this problem, we developed the I-Solar model, which considers all the elements that comprise the photovoltaic system, the meteorological conditions, and the energy demand. We have validated it on a solar pumping system, but it can be applied to any other system. The I-Solar model was compared with a simplified model and a machine learning model calibrated in a high-power and complex photovoltaic pumping system located in Albacete, Spain. The results show that the I-Solar model estimates the generated power with a relative error of 7.5%, while the relative error of machine learning models was 5.8%. However, models based on machine learning are specific to the system evaluated, while the I-Solar model can be applied to any system.