Agrisolar Clearinghouse Icon
,

Integrating solar energy with agriculture: Industry perspectives on the market, community, and socio-political dimensions of agrivoltaics

Despite the mature and promising potential for solar photovoltaic (PV) technology to retrench global reliance on fossil fuels, large-scale PV development is experiencing complex challenges, including land use conflict and — as the scale of solar has increased — social resistance, which has previously been more commonly associated with large-scale wind farms. Growth in large-scale PV development can create land use disputes, especially in instances of competition between land for agriculture versus energy production. This history and growing concern over land use highlights the challenge of meeting the soaring demands for solar power while conserving rural and agricultural lands. It is posited that the impact of solar development on land will be diminished by siting PV in a manner that is compatible with multiple uses, suggesting changes in conventional practices will be necessary. The specific intent of this study was to draw insight about solar development from participant experience, and responses indicate that the most considerable opportunities and barriers center on social acceptance and public perception issues. Perspectives about the opportunities and barriers to agrivoltaic development were captured via interviews with solar industry professionals, and inductive analysis revealed that interviewees were most focused on opportunities and barriers that correspond with Wüstenhagen et al.’s three dimensions of social acceptance: market, community, and socio-political factors. The social acceptance of renewable energy is shaped by a complex interplay among market, community, and socio-political factors. While this framework is constructive for understanding the varying dimensions of social acceptance, Devine-Wright et al. assert that it is weak in terms of the relationships between dimensions, suggesting that further research should apply a holistic approach for discerning the interdependence among factors shaping social acceptance of renewable energy. The purpose of this study is therefore to explore the perceptions of industry professionals in the U.S. and consider the implications of the identified opportunities and barriers from a social science perspective. To address global demands for both food and energy, the relationship between critical land uses must become complementary rather than competitive. Because social acceptance of renewable energy technology is pivotal to energy transitions, this study reflects a proactive attempt to understand agrivoltaics from a solar industry professional’s perspective to better understand the significant opportunities and barriers to development. This research suggests that agrivoltaics are potentially accretive to the long-term growth of the solar industry, possessing the capacity to increase social acceptance of local solar developments. While the agrivoltaic concept is widely supported by the participants in this study, popularity of an emerging technology among industry experts may not indicate local level acceptance of a specific development. As new energy technologies such as agrivoltaics transcend niche applications to become more prevalent, localized resistance is to be anticipated and the dimensions of social acceptance, including the opportunities and barriers associated with each dimension, can help inform decision making to enhance the growth of agrivoltaic development.