Tag Archive for: AgriSolar

This study focuses on the dual use of the water area at a small-scale shrimp farm in western Taiwan for solar photovoltaic electricity generation and aquaculture. Based on the simulation results and SWOT (strengths, weaknesses, opportunities, and threats) analysis, recommendations are made for the design and operation of a solar-powered aeration system for shrimp farms.

This Article describes how information gaps, externality problems, and local opposition are hindering agrivoltaics development in the United States and identifies specific laws and policies capable of enabling agrivoltaics to flourish.

Written for the AgriSolar Clearinghouse by Heidi Kolbeck-Urlacher, Center for Rural Affairs

This report provides decision makers and others an overview of policy approaches to combining solar with agriculture and offers considerations on how regulations can facilitate dual-use.

Commodity or Specialty: Tracking Pollinator-Friendly SRECS

“The M-RETS platform—the leading renewable environmental attribute tracking system used by Fortune 25 companies, utilities, and regulators—this year will begin tracking an additional environmental attribute associated with grid-scale solar projects: a pollinator-friendly designation. M-RETS already tracks solar renewable energy credits (called S-RECs) and Minnesota is one of a number of states that have created an official standard and system recognizing solar projects that utilize ground cover that provides meaningful benefits to pollinators, song birds, and game birds.

This additional data gives solar energy buyers the opportunity to encourage the development of pollinator-friendly solar and stack additional environmental benefits on their energy purchase.” – M-RETS

This can be thought of as if your company is buying a commodity product or a specialty product. If these options are the same price, would your company prefer to buy a commodity SREC or a boutique SREC?

Spade Develops Agrivoltaic Software  

“Solar developer and federal grant recipient Sandbox Solar has released a beta version of its agrivoltaic power plant software modeling tool that aids in the design and optimization of solar panels and the crops underneath. 

Sandbox Solar, a solar contractor, has been developing a (software) tool, called Spade. Spade aims to help solar developers determine the best crop types and solar panel layouts for their projects. The tool made it into the fifth and final round of the Department of Energy’s “American Made” solar innovation program.” – PV Magazine 

Spade is a stakeholder in the AgriSolar Clearinghouse. 

Global Agrivoltaics Market Valued at $9.3 Billion 

“Agrivoltaics, the combination of farming practices with energy produced by solar photovoltaics (PV), is forecast to become a $9.3 billion marketplace by 2031, growing at a compound annual growth rate (CAGR) of 10.1% in that timeframe from $3.6 billion a year ago, according to a research note by India-based market research company Allied Analytics.” – PV Magazine 

Solar Could Play Important Role in Cannabis Industry 

“Solar energy and cannabis cultivation are old bedfellows. PV pioneer John Schaeffer has even credited solar with facilitating the northern California cannabis industry, which in turn supported the nascent PV sector. Now, as the legalization of medical and recreational cannabis gathers pace, solar continues to perform a key role.  

Canndescent Senior Director of Compliance Andrew Mochulsky told PV Magazine the Colorado Desert’s unrelenting sunshine and limited cloud cover make solar a no-brainer. ‘We’re in the heart of solar and wind country so it made sense to bring solar online,’ he says. ‘We also think it’s just the right thing to do.’”– PV Magazine 

Join the AgriSolar Clearinghouse team for our webinar series with this round-table discussion featuring innovative solar designers Helical Solar, Sun Agri, Hyperion, Sandbox Solar, Solargik, RUTE Agrivoltaics, Soliculture, Stracker Solar, Taka Solar, and Sunstall!

Minnesota energy companies, solar developers, farmers, and chefs are partnering in innovative ways to grow food, renewable energy, and pollinator habitat all within the same piece of land. The National Center for Appropriate Technology’s (NCAT) AgriSolar Clearinghouse today released its short film “Dive into the Prairie,” which takes viewers on a short tour of Minnesota’s agrivoltaic success stories.

AgriSolar or agrivoltaic partnerships are growing across solar-appropriate farmland in the U.S., providing a new revenue source for farmers, clean energy for surrounding communities, and myriad benefits to crops, livestock, and pollinators.

Chef Mateo Mackbee uses solar-grown foods at his St. Joseph, Minn., restaurant. Everything from salad greens grown under or around solar panels, to the honey that sweetens his salad dressing.

“Agrivoltaics is a big thing for me to see what can be grown, grazed, or raised in and around solar arrays,” said Chef Mackbee. “AgriSolar is the future, for sure.”

Mackbee sources solar-grown honey from Bare Honey, which partners with energy companies and solar developers to place his commercial beekeeping boxes on the same land as the solar panels and pollinator habitat.

“Pollination is a huge part of what commercial beekeeping is,” said Bare Honey founder Dustin Vanasse. “We have our co-located honeybees and those, combined with the native pollinators on these sites, will provide pollination to the farms that are around the site.”

NCAT’s AgriSolar Clearinghouse is connecting businesses, land managers, and researchers with trusted resources to support the growth of co-located solar and sustainable agriculture.

“The partnerships blossoming in Minnesota show a real-world example of how it can work for several industries that share common goals,” said NCAT Energy Director Stacie Peterson, PhD. “Land is finite, and AgriSolar partnerships mean we can maximize our resources for the benefit of communities, the environment, and businesses.”

Research Shows Crops Can Boost Photovoltaic Panel Performance and Longevity 

“We now have, for the first time, a physics-based tool to estimate the costs and benefits of co-locating solar panels and commercial agriculture from the perspective of increased power conversion efficiency and solar-panel longevity,” said lead author Henry Williams, a doctoral student at Cornell. 

“‘There is potential for agrivoltaic systems – where agriculture and solar panels coexist – to provide increased passive cooling through taller panel heights, more reflective ground cover and higher evapotranspiration rates compared to traditional solar farms,’ said senior author Max Zhang, professor in the Sibley School of Mechanical and Aerospace Engineering, ‘We can generate renewable electricity and conserve farmland through agrivoltaic systems.’” – News Wise  

The study can be found here

170 MW of Agrivoltaics to be Developed in Italy  

Enel Green Power has started building a 170 MW agrivoltaics plant in Viterbo, Italy. The Rome-based company claims it will be Italy’s largest agrivoltaics installation upon completion. The plant will feature bifacial PV modules mounted on trackers, both from undisclosed manufacturers.  

Enel is using a ‘solar-first’ approach to solar and agriculture, with electricity generation remaining the main goal. Its approach is designed to retrofit large-scale solar plants to allow crops to grow between the trackers and the panels. Agriculture is integrated into existing solar farms, rather than the other way around, as is often the case in agrivoltaics projects.” – PV Magazine 

Oregon Research Shows Agrisolar Benefits Crops and Livestock 

“Putting solar panels on farmland, known as agrivoltaics, has been a bit of a political hot-potato in some parts of Europe and the U.S. For environmental engineer Chad Higgins, at Oregon State University, the choice between farmland and energy is a false one. There has to be thoughtful design, he says, but ’our research indicates they can coexist and even create mutual benefits.’ 

Researchers around the world are exploring growing everything from grapes and raspberries to potatoes and wheat under and between photovoltaic panels. Higgins has shown that sheep will preferentially graze in field areas where shade was offered by solar panels; lambs that foraged under solar panels put on as much weight as those in open fields and in late spring needed less water.”  – Reuters 

Sunstall’s Sunzaun product installed on a winery.

By Helge Biernath, Sunstall Inc.

I just attended the 2023 Solar Farm Summit, where I presented and spoke to the experts in the industry. One topic never came up: How will ESG (environmental, social, and governance) requirements from companies like Coca-Cola Now and Walmart influence agricultural photovoltaics? ESG requirements from such companies are likely to have a significant impact on agricultural photovoltaics (APV), the practice of integrating solar panels into agricultural lands.

Firstly, these companies have committed to reducing their carbon footprint and promoting sustainable practices in their operations, which will require them to procure renewable energy. APV is a form of renewable energy that can be integrated into agricultural production and help reduce the carbon footprint of these companies. Therefore, the ESG requirements of these companies may drive the adoption of APV by their suppliers and partners. And not only that: they will also require their suppliers to follow similar regimens to reduce the carbon footprint, and they will ask for strategic plans to get there and reports on the success.

Secondly, APV can offer several benefits to farmers, including providing an additional source of income, reducing water evaporation, and improving crop yield. By promoting the adoption of APV, these companies can encourage sustainable agricultural practices and support local communities. Given the ESG requirements, farmers will be asked to support the goal of carbon neutrality. It will be a challenge but also a huge opportunity through solar farming.

Rendering of an APV strawberry field.

Finally, ESG requirements are increasingly becoming a factor in investment decisions, with investors looking for companies that prioritize sustainability and social responsibility. The adoption of APV can enhance the ESG profile of companies in the agriculture sector and help them attract more socially responsible investment.

In summary, the ESG requirements of companies like Coca-Cola and Walmart are likely to drive the adoption of APV in the agriculture sector, promoting sustainable practices, reducing carbon footprint, and improving the ESG profile of companies in the sector.

And the Oscar goes to THE FARMERS! They will be asked to help!

I feel with the solutions we have seen over the last days at the Solar Farm Summit, the agriculture and solar community is ready to support ESG goals.

All photos courtesy of Sunstall, Inc.

The National Center for Appropriate Technology’s (NCAT) AgriSolar Clearinghouse today premiered its short film “The Solar Shepherd” during the 2023 Solar Farm Summit in Chicago.

The film showcases a family-owned farm in central Massachusetts that’s raising sheep and solar energy on the same piece of land. AgriSolar or agrivoltaic partnerships are growing across solar-appropriate farmland in the U.S., providing a new revenue source for farmers, clean energy for surrounding communities, and myriad benefits to crops, livestock, and pollinators.

“It’s been a wonderful friendship between the two businesses,” says Solar Shepherd LLC founder Dan Finnegan. “We can’t access enough land to keep our farm sustainable, without this partnership with solar, we wouldn’t have a successful farm, we simply don’t have enough acres to graze.”

Finnegan partnered with SWEB Development Inc. on the 15-acre solar array which provides enough clean energy to power 1,100 homes and has so-far raised 45 lambs to maturity.

“You can have this partnership in a one-acre field, a 15-acre field up to a couple hundred acres,” says Joe Mendelsohn, project developer with SWEB Development Inc.

NCAT’s AgriSolar Clearinghouse is connecting businesses, land managers, and researchers with trusted resources to support the growth of co-located solar and sustainable agriculture.

“Tremendous potential exists in partnerships between farmers and solar developers,” says NCAT Energy Director Stacie Peterson, PhD. “As the demand for solar energy grows, it’s up to us to be good stewards of the finite land resources we have and maximize the benefit to farmers, communities, and the environment.”

Sheep grazing at the Mechanicsville site.

By Anna Adair, NCAT Energy Program Assistant

Located near Richmond, Virginia, the Mechanicsville solar park is one of the state’s first utility-scale solar sites. Covering over 220 acres, the 28-megawatt, single-axis tracking site provides a source of clean power to thousands of homes in the state. More than just a solar site, though, the location is also the home base for hundreds of sheep under the care of Eric Bronson and Sam Perkins at James River Grazing. 

James River Grazing started in 2016 when founder Eric Bronson noticed the solar industry beginning to take off in Virginia. A Virginia native, Bronson attended college at Montana State University and worked for several years on large, range-based livestock operations before returning to his home state. He knew he wanted to stay involved in agriculture, but without already owning land, he realized the upfront costs were prohibitive. Compared to raising cattle or growing crops, the lower initial investment needed to successfully farm sheep gave Bronson the chance to farm in a traditional production environment before the company received its first solar grazing contract in 2019.  

For solar sites without grazing plans, mowing must be brought in for vegetation management, a difficult task for many solar developers in recent years due to labor shortages. “The grazing came along at the perfect time,” Bronson says. He explains that the Mechanicsville site was being mowed about once a month, but with the integration of livestock, it was reduced to a “clean up” mow in the fall and smaller mows in early spring. Even then, “they’re not mowing one hundred percent of the site,” Bronson explains. Only about a quarter of the site is mowed at these times, significantly lowering the time and labor cost required to control the vegetation. 

Sheep grazing under the solar panels.

Operating on the Mechanicsville site didn’t come without its challenges, however. The site hosts between 100 and 300 ewes at a time, depending on the time of year and vegetation growth. While smaller operations will move flocks on and off location seasonally, James River Grazing operates on the site year-round. Not having facilities on-site and the expansive costs to move the sheep off-site is an added layer of difficulty that comes with grazing sheep on utility-scale sites. “Everything has to be portable,” Bronson points out. Nonetheless, James River Grazing’s efforts have been so successful that SunEnergy1, the solar developer for the site, hired Bronson as Director of Livestock for the entire company and has implemented solar grazing on a number of other sites, as well. 

With a total of six grazing sites and around 1,500 sheep, Bronson says James River Grazing is looking to continue its success by creating additional partnerships with developers across the region. While being one of the first to embrace solar grazing comes with some advantages, it also means that learning involved a significant amount of trial and error. “That was one of the biggest roadblocks,” Bronson says, referring to the lack of available resources to help guide them in the early days. Their knowledge and experience also put them in an ideal place to help solar developers create construction plans with solar grazing in mind, making it much easier for grazers to care for the sheep on site. James River Grazing is still working out the details for exactly how they plan on moving into the consulting space, but their track record of success will undoubtedly make them a valuable resource for solar developers and new grazers alike.  

All photos courtesy of James River Grazing.