Tag Archive for: AgriSolar

By Anna Richmond-Mueller, NCAT Energy Analyst

When it comes to conversations surrounding energy and water use in the modern world, the agricultural industry’s consumption of both is often at the forefront. As the world’s population continues to grow, humanity is tasked with the challenge of finding ways to meet both food and energy demands across the globe. “I really believe that greenhouse growing is the epitome of sustainable agriculture,” says Soliculture cofounder and CEO Dr. Glenn Alers. Whether it is the ability to greatly increase crop yields when compared to traditional open field growing, or the potential for increased water-use efficiency in combination with hydroponics, greenhouses could play a key role in addressing these concerns. Solar greenhouses also could also play a role in mitigating future energy crises. 

Soliculture began in 2012 as a startup in the Physics Department at the University of California Santa Cruz. Dr. Alers and his cofounder were conducting research on luminescent solar concentrator panels when he realized the technology’s agricultural potential. Luminescent solar panels utilize a luminescent dye that selectively absorbs a portion of the solar spectrum and readmits light at a different wavelength. The dye used in Soliculture panels absorbs the green portion of sunlight with low photosynthesis efficiency and converts it to red light with much higher photosynthesis efficiency. The panels enhance the light quality inside a greenhouse by optimizing the light spectrum for improved plant growth. Moreover, the panels contain bifacial cells that collect the light reflected from the crops planted below them. The red luminescent dye also enhances the power output of embedded cells by 15 to 32%, compared to a conventional panel. 

Installed Soliculture luminescent solar panels.

In 2019, Soliculture began a research project on Whiskey Hill Farms in Watsonville, California, aimed at developing these solar panels for use on hybrid high-tunnel greenhouses. As an active organic farm already growing produce in both field and greenhouse settings, Whiskey Hill Farms served as an ideal host for the project. The Soliculture research greenhouse was constructed from the ground up with help from a local high tunnel installer, measuring 120’ long and 25’ wide upon completion. Additional bracing was added to the roof structure, forming a “queen style” truss to support the weight of the panels. One half of the high tunnel was covered by a semi-clear plastic film that served as the control for the upcoming crop growth study, and the other was covered by Soliculture solar panels. These panels were specially designed for high tunnel greenhouses and had a cell coverage of 42%.  

Interior of research greenhouse with panels installed.

The project hit a temporary snag when waterproofing the panel racking system proved to be more of a challenge than expected. At first, horizontal mounting bars were attached to the tubing of the greenhouse’s roof frame and foam weather stripping was installed between the panels to create a watertight seal. Water was still able to leak through at the corners and where the mounting bolts connected the panels to the roof. Knowing the potential for these leaks to cause erosion and negatively impact crop growth, the Soliculture team returned to their laboratory and created a modified racking system specifically for high tunnel application. This new system used mounting brackets that attached to the bottom of the frame and utilized a rubber “T” gasket inserted between the panels to create a seal. Finally, the plastic film portion of the roof was attached to the panels using an aluminum channel screwed into the panel frame and “wiggle wire” to hold the plastic film in position. With a waterproof roof in place, the crop trail was ready to commence.  

The following crops were selected for planting following the completion of the high tunnel in mid-November: strawberries, red romaine lettuce, red butter head lettuce, cilantro, mustard greens, and turmeric. To ensure the trial’s results would translate to commercial production, the research team used common commercial growing methods throughout the duration of the trial. These methods included drip irrigation with untreated well water, sand filtration, and liquid organic fertigation. By the end of the trial, the majority of the crops grown under Soliculture panels matured close to two weeks ahead of those grown under the clear film portion of the high tunnel. The fresh weight for the under-panel crops was superior as well, with red butter head lettuce seeing the greatest benefit at 145% higher weight. Mustard greens weighed in at 95% higher, cilantro at 35%, romaine lettuce at 32%, and turmeric at 25%. The strawberry fruit showed no statistically significant difference in fresh weight, but the single 5’ by 120’ planted bed yielded more than 350 pounds of fruit by the end of July.  

Crops grown under Soliculture panels.
Crops grown under plastic film.

On top of the very successful crop trial, the power generated by the greenhouse panels was used by Whiskey Hill Farms to power their day-to-day operations. A total of 58 Soliculture panels provided the farm with a 6kW system, which was connected to an inverter. The AC power was then fed back into the farm’s power system, a testament to how greenhouse solar can benefit the farm beyond improving plant growth.  

The field of agrivoltaics is constantly evolving, with numerous researchers and farmers searching for the ideal nexus between the agricultural industry and energy production. Soliculture’s contributions to agrivoltaics is important for farmers who have reservations about growing food underneath and around solar panels. “We haven’t seen any negative effect on plant growth,” Dr. Alers says, referring to the Whiskey Hill Farms project and several other successful Soliculture installations across the United States and Canada. Greenhouse production has always had the potential to help alleviate the water crisis and increase the amount of food grown per acre, but Soliculture’s technology is giving it a bright future in energy production, as well. 

All photos courtesy of Soliculture 

Win for America’s Farmers: Harvesting Solar Energy 

“America’s solar industry has boomed in recent years, and is slated for a big boost from the Democrats’ recently passed climate bill. Yet solar still only accounts for about 3 percent of electricity flowing into America’s grid—less than one-seventh the share from coal. If we want to phase out fossil fuels and accommodate an electric vehicle revolution, the sun’s contribution has to rise dramatically—and fast. But where to put all the panles?

The best places for solar installations, according to a 2019 study from the University of Utah and Oregon State, tend to be the areas where we already grow our food. That’s because, just like sun-loving tomato plants that fare poorly when the mercury creeps north of 85 °F, photovoltaic (PV) panels lose their efficiency at higher temperatures. But that doesn’t mean we have to starve ourselves to keep lights on and cars humming. By elevating solar panels far enough above the ground so people, plants, and animals can operate underneath, we can “essentially harvest the sun twice,” says University of Arizona researcher Greg Barron-Gafford. Enough sunlight to grow crops gets past the panels, which also act as a shield against extreme heat, drought, and storms.” – Mother Jones  

5 Signs the US Agrisolar Revolution has Begun  

“An upswell of opposition to large-scale solar power plants on farms took shape in the U.S. last spring, partly fueled by conspiracy theories about climate change. Nevertheless, farmland is attractive to solar developers. Now they have a new support system on their side, in the form of agrivoltaics.” – Triplepundit.com  

Solar Energy Corporation of India Issues Tender to Install Agrisolar Pumps 

“New Delhi: The Solar Energy Corporation of India (SECI) on Monday issued a tender for setting up agricultural solar pumps in selected states pan-India under component-B of the PM-KUSUM scheme of the renewable energy ministry.  

‘Individual farmers will be supported to install standalone solar agriculture pumps of capacity up to 7.5 HP for replacement of existing diesel agriculture pumps and irrigation systems in off-grid areas, where grid supply is not available. Installation of new pumps will be permitted under this scheme except in dark zone areas,’ said the SECI tender document.” – Energyworld.com 

UC Davis Study Shows Harvesting Various Light Spectra Benefits Agrisolar  

“Scientists from the University of California, Davis, are investigating how to better harvest the sun — and its optimal light spectrum — to make agrivoltaic systems more efficient in arid agricultural regions like California. 

Their study, published in Earth’s Future, a journal of the American Geophysical Union, found that the red part of the light spectrum is more efficient for growing plants, while the blue part of the spectrum is better used for solar production.” UCDavis.com 

Massachusetts Sees Increase in Agrisolar Incentives 

“A Massachusetts incentive program for projects that blend solar energy and agricultural production shows signs of finally gaining momentum after a slow rollout that has at times frustrated solar developers and farmers alike. 

In 2018, Massachusetts became the first state to offer financial incentives for “dual-use” or “agrivoltaic” solar projects built above active agricultural land. Since the launch, however, just three projects have gotten up and running. Another eight have qualified for the incentive but not yet been built.” – Energynews.com  

Written for the AgriSolar Clearinghouse by Center for Rural Affairs


In this study, a donor:acceptor polymer blend is optimized for its use in laminated devices while matching the optical needs of crops. The study reveals degradation modes undetectable under laboratory conditions such as module delamination, which accounts for 10–20% loss in active area. Among the active layers tested, polymer:fullerene blends are the most stable and position as robust light harvesters in future building-integrated organic photovoltaic systems.

In this article, researchers evaluated seasonal patterns of soil moisture (SM) and diurnal variation in incident sunlight (photosynthetic photon flux density [PPFD]) in a single-axis-tracking agrivoltaic system established in a formerly managed semiarid C3 grassland in Colorado. Their goals were to (1) quantify dynamic patterns of PPFD and SM within a 1.2 MW photovoltaic array in a perennial grassland, and (2) determine how aboveground net primary production (ANPP) and photosynthetic parameters responded to the resource patterns created by the photovoltaic array. Investigators found relatively weak relationships between SM and ANPP despite significant spatial variability in both. Further, there was little evidence that light-saturated photosynthesis and quantum yield of CO2 assimilation differed for plants growing directly beneath (lowest PPFD) versus between (highest PPFD) PV panels. Overall, the AV system established in this semiarid managed grassland did not alter patterns of ANPP in ways predictable from past studies of controls of ANPP in open grasslands.

In this article, researchers in Korea analyze the profitability of agrivoltaics and its implications for rural sustainability. The profitability of agrivoltaics is verified in all studied regions, and the order of profitability and productivity by region are opposite to each other. Researchers suggest that regions with lower productivity may have a higher preference for installing agrivoltaics, implying the installation of agrivoltaics provides a new incentive to continue farming even in regions with low agricultural productivity.

This resource aims to guide informed decisions by landowners, investors, planners, and government officials in considering the planning and siting of grid-scale solar systems in Pennsylvania. The intent is to balance and promote the goals of sustainable income-generation and protection of water, soil, and valuable agricultural land resources.

This episode is a conversation between Stacie Peterson, NCAT’s Energy Program Director and Manager of the AgriSolar Clearinghouse, and Nate Tassinari, the owner of Million Little Sunbeams, a third-generation hay farm in Monson, Massachusetts.

It is the second in a series of AgriSolar Clearinghouse podcasts that are being featured on ATTRA’S Voices from the Field podcast.

Nate’s hay operation is a 1-acre farm co-located with a solar array that generates 250 kilowatts of power. It is centrally located among a network of family farms and has solar panels that are elevated 10 feet above the ground, both to accommodate haying equipment and to satisfy Massachusetts regulations for incentives.

In the conversation, Nate describes the financial aspects of owning a solar array, how to harvest the sun during the winter, the interconnection of family farmlands, and the role solar can play in farm ownership.

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office Award Number DE-EE000937. Legal Disclaimer: The views expressed herein do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Related ATTRA Resources:

Other Resources:

Contact Stacie Peterson at stacieb@ncat.org

Please complete a brief survey to let us know your thoughts about the content of this podcast.

You can get in touch with NCAT/ATTRA specialists and find access to our trusted, practical sustainable-agriculture publications, webinars, videos, and other resources at ATTRA.NCAT.ORG.

Learn about NCAT’s other innovative sustainable agriculture programs.

This study focused on the photosynthetic photon flux density and employed an all-climate solar spectrum model to calculate the photosynthetic photon flux density accurately on farmland partially shaded by solar panels and supporting tubes. The researchers also described an algorithm for estimating the photosynthetic photon flux density values under solar panels, which were then validated using photosynthetic photon flux density sensors. The calculation formula enables farmers to evaluate the economic efficiency of a system before introducing it.

This life cycle assessment study investigates the environmental performance of sheep-based agrivoltaic systems and concludes that agrivoltaic systems are superior to conventional ground-mounted PV systems because they have dual purposes and reduce the environmental impacts associated with producing food and electricity.