The Maine Department of Agriculture, Conservation, and Forestry presents this technical guide regarding the siting of utility-scale solar projects with consideration for valuable agricultural land, forest resources, and rare or unique natural areas. The guide is intended to provide practical information for those considering solar development on their property, as well as planning important preconstruction, construction, and post-construction/decommissioning activities.
Tag Archive for: AgriSolar
This paper is an analysis of three different agrivoltaic configurations: static with optimal tilt, vertically-mounted bifacial, and single-axis horizontal tracking. A model is also developed to calculate the shadowing losses on the PV panels along with the reduced solar irradiation reaching the area under them for different PV capacity densities.
Below is a compressed version of the article – click here to view the original version.
This article posits that in order to optimize agrivoltaic systems for crop growth, energy pathways must be characterized. While solar panels shade crops, they also emit longwave radiation and partially block the ground from downwelling longwave radiation. The authors suggest that a deeper understanding of the spatial variation in incoming energy would enable controlled allocation of energy in the design of agrivoltaic systems. This paper also presents a model to quantify the downwelling longwave energy at the ground surface in an agrivoltaic array and demonstrates that longwave energy should not be neglected when considering a full energy balance on the soil under solar panels.
When installing photovoltaic panels on agricultural land, one of the most important aspects to consider are the effects of the shadows of the panels on the ground. This study presents a valid methodology to estimate the distribution of solar irradiance in agrivoltaic installations as a function of the photovoltaic installation geometry and the levels of diffuse and direct solar irradiance incident on the crop land.
This PhD dissertation addresses four primary questions: 1.) To what extent is plant-available radiation reduced by solar panels of a photovoltaic system? 2.) How does this effect parameters of aerial and soil climate? 3.) How do the cultivated crops respond to the altered cropping conditions with regard to plant growth and development? 4.) What consequences does this have regarding the yields and the chemical composition of the investigated crop-species? A field experiment in which grass clover, potatoes, celery, and winter wheat were planted under a photovoltaic facility in Southwest Germany was conducted to answer these questions.
This guide, developed in Germany by Fraunhofer, provides information on the potential of agrivoltaics, including the latest technologies and regulatory frameworks in this area. It also offers practical tips on how agrivoltaics can be used by farmers, municipalities and companies.
This report by SolarPower Europe provides guidelines to support solar industry stakeholders with information about environmental legislation at the EU and European national levels. It also addresses the potential impacts on land use and outlines key actions for suitable land identification for solar PV projects.
By Stephanie Hince, AES
Although Grafton, Massachusetts, is just an hour west of Boston, life there is very different. Grafton is a friendly country town with a lovely historical feel. It has been a farming community for centuries, where thriving cotton, grist, and paper mills once dotted the landscape.
Whereas the Quinsigamond River once powered numerous mills, a newly constructed solar farm owned by AES is incorporating two Grafton traditions: clean energy and agricultural production. Let’s explore how our solar project brings together key stakeholders to help protect farmland in Grafton and beyond.
Grafton Solar’s On-site Agricultural Production
This solar installation is located on Knowlton Farm, a family farm operating for over 150 years. Instead of merely leasing fallow farmland for the project, the solar farm was designed with on-site agricultural production and research in mind from the start.
Grafton Solar is a 2-megawatt community solar farm with a 1.4-megawatt battery energy storage system. Many stakeholders have come together with a shared vision of clean energy, food production, and learning, which is making this endeavor a success.
Our current and prospective project partners include the U.S. Department of Energy, Massachusetts Department of Energy Resources, Massachusetts Department of Agricultural Resources, UMass Amherst, American Farmland Trust, and Cornell University. In December 2020, AES acquired the Grafton Solar project from BlueWave.
What Made This Solar Farm Unique from Day 1
An agricultural plan was created early in the design phase as a collaboration between Paul Knowlton, a fifth-generation farmer and current operator of Knowlton Farms, Iain Ward of Solar Agricultural Services, and BlueWave Solar. Today, that plan has come to fruition. With a keen eye, passersby will notice something very different at our project site.
Borrego, the construction contractor, elevated the solar modules to a height of 8 to 14 feet and created large inter-row spacing to allow cattle grazing and access for farm equipment. The agricultural integration component of the project began last May with the planting of squash and lettuce, as well as cattle grazing.
There is still much to be learned. Solar developers and farmers need a greater understanding of how to make widespread use of agrivoltaics cost-effective and practical. Thus, Grafton Solar provides opportunities to advance its application on other project sites and by other solar developers across the U.S.
Grafton Solar is Now a Living Laboratory
We intentionally reserved a section of the project area for new and existing research partnerships – Grafton Solar is an official hub of activity for learning about agrivoltaics. Research partners, UMass Amherst and the American Farmland Trust, are working to establish site trials to assess crop productivity, soil health, and micro-climatic conditions, thanks to a grant from the U.S. Department of Energy Solar Energy Technology Office (SETO). Once available, research information will be made publicly available so that others in the solar and agricultural industries can learn and benefit from their findings.
Solar Incentives Helped Make This Innovative Project Possible
In Massachusetts, revenue for solar projects is provided through the SMART program, which starts with a fixed compensation rate for projects. A project can obtain different adders based on project attributes, which increases the rate and therefore the benefits to the project developer and landowner. Some of these adders include making a project a community solar farm, adding battery storage, or having a dual-use agricultural component. Grafton Solar does all three.
Community solar projects expand access to renewable energy and allow subscribers like households, businesses, educational institutions, municipalities, and others to experience the same benefits of solar power without having to install a solar array on their own property. Battery storage helps to mitigate the intermittent nature of solar energy by storing solar energy when production is high and electricity demand is low and promotes reliable, carbon-free power by making solar energy available when utility companies need it most. Thus, it reduces the need to use more polluting power plants when power demand is high.
Grafton Solar is built around the community solar model, incorporates battery storage, and is supporting a legacy of agricultural production at Knowlton Farm – a win-win-win. By leveraging Massachusetts’ innovative state-level solar incentives (which includes the only rate-adder for agrivoltaics in the U.S.), Grafton Solar is delivering multiple co-benefits to the community and showcasing that solar projects can do much more than produce power on site.
Protecting Farmland When Developing Solar Energy Projects
Grafton Solar is AES’ first agrivoltaic site in the Northeast and is consistent with our vision to provide the smarter, greener energy solutions the world needs. According to a report by the American Farmland Trust, the U.S. lost or compromised 2,000 acres of farmland and ranchland every day from 2001 to 2016.
If this trend continues, an area nearly the size of South Carolina will be lost between 2016 and 2040, which could be detrimental to food security. Many farmers across the U.S., like Paul Knowlton, are looking for new revenue streams and ways to keep family farms operating for future generations. In addition to producing food, family farms are also about preserving a way of life.
At AES, we understand the importance of protecting farmland when integrating renewable energy projects into the landscape. Solar energy development and farm viability can go hand-in-hand when taking a thoughtful, dual-use approach.
Using Partnerships to Maximize Opportunities
We understand the importance of land and are actively working to create synergies between renewable energy development and agricultural land use. In addition to successfully co-locating crop growth and grazing at Grafton Solar, we have implemented active sheep grazing on thousands of acres of land at utility-scale solar sites, and we are participating in research partnerships in various regions across the U.S. to better understand how we can harvest clean energy and food from the same land.
We know that the success of our company is only as strong as the partnerships within the communities where we operate, so we develop, build, and manage projects that maximize value to a variety of stakeholders. Ultimately, we need both clean energy and productive farmland, not just one or the other.
Grafton Solar provides an excellent opportunity to collaborate with the research community and the Knowlton family to further our understanding of how to make agrivoltaics practical and more widespread. The project symbolizes preserving a way of life that spans many generations while embracing innovative clean energy technologies that promote food security, reliable energy, and a cleaner environment.
Written for the AgriSolar Clearinghouse by Center for Rural Affairs
The AgriSolar Clearinghouse Podcast officially kicks off with a conversation between Meg Caley, Executive Director and co-founder of the Colorado nonprofit Sprout City Farms and NCAT Energy Director Stacie Peterson. They discuss the many additive benefits of agrisolar, the challenges of farming in an obstacle course, and the importance of community. AgriSolar podcast episodes will be available on Voices from the Field, NCAT’s ATTRA sustainable agriculture podcast series.
Sprout City Farms began in 2010 with a vision of increasing food access and community resiliency through farming underutilized urban land. Among its partnerships, Sprout City Farms works with Jack’s Solar Garden in Longmont, Colorado, growing crops in the spaces between solar panels at the site, which is the largest agrivoltaic research facility of its kind in the United States.
You can read more about Sprout City Farms, Jack’s Solar Garden, and the Colorado Agrivoltaic Learning Center at these websites: