Australian Researchers Develop Solar Panels Optimized for Agrisolar
“University of New South Wales researchers have teamed up with Tindo Solar to develop a line of semi-transparent modules, specialized for agrivoltaic cropping, which will use nanoparticles tuned to capture different parts of the light spectrum. ‘There is evidence you don’t need the full spectrum and some plants will work even better if you provide them with only part of the spectrum,’ project lead and UNSW Associate Professor Ziv Hameiri tells PV Magazine Australia. Crucially, he says, the project will also open a line between farmers, solar researchers and industry, creating the potential for mutual benefits.” – PV Magazine
Agrisolar Operations Show That Solar Does Not Compete with Farmland
“In short, Agrivoltaics is a rapidly growing branch of the energy transition. It is being applied to all manner of crops across the world. All kinds of benefits are emerging, with China even using it to reverse desertification. Not only is it expanding clean energy production, it is providing a vital second income stream for farmers. Banning it would cut off a really important opportunity for Britain’s farmers, at a time when rural poverty is a real issue.” – Green Peace
Oregon State Develops 5-Acre Agrisolar Project
“Oregon State University has started construction on a $1.5 million research project to optimize dual-use, co-developed land hosting solar photovoltaic arrays and agriculture. The five-acre Solar Harvest project is located at Oregon State’s North Willamette Research and Extension Center in Aurora, Oregon, 20 miles south of Portland. The 326-kW project is the result of a partnership between Oregon State and the Oregon Clean Power Cooperative, which developed the solar array and financed the construction of the solar array.” – Solar Power World
https://www.agrisolarclearinghouse.org/wp-content/uploads/2022/10/agrisolar-roundup-photo-scaled.jpg25602378A. J. Pucketthttps://www.agrisolarclearinghouse.org/wp-content/uploads/2022/02/AgriSolar_stacked_1-338x400.pngA. J. Puckett2022-10-26 11:20:272022-12-08 16:18:57AgriSolar News Roundup: Agrivoltaic Research in Australia, Solar and Farmland Compatibility, Agrisolar Development in Oregon
This guide provides an overview of the federal investment tax credit for residential solar photovoltaics (PV). The federal residential solar energy credit is a tax credit that can be claimed on federal income taxes for a percentage of the cost of a solar PV system paid for by the taxpayer.
https://www.agrisolarclearinghouse.org/wp-content/uploads/2022/01/AgriSolar-Library-.png400600A. J. Pucketthttps://www.agrisolarclearinghouse.org/wp-content/uploads/2022/02/AgriSolar_stacked_1-338x400.pngA. J. Puckett2022-10-25 10:12:062022-10-25 10:12:32Homeowner’s Guide to the Federal Tax Credit for Solar Photovoltaics
Lake Pulaski is an agrivoltaic solar power plant site developed by Enel Green Power that spans over 68.2 acres in Buffalo, Minnesota. This site is one of 16 developed for the Aurora Distributed Solar LLC project in 2017, supporting pollinators, grazing, and an apiary. The layout consists of 34,668 panels at 315 watts each, spanning over 500 individual arrays. The total plant system size is 10.92MW (dc). Each panel has a SolTech single, horizontal axis tracker to follow the sun path and optimize production. This tracker was chosen over the more standard axis-pole trackers due to their ability to allow curves in the array installation to accommodate the rolling landscape. The developers strived to install the system with minimal land disturbance to maintain the landscape and reduce excavation, thus allowing the panels to move with the rolling hills. Panel height was design to be approximately 2.5 fee from the ground at the maximum tilt angle of 45o to allow grazing sheep to pass under without harm to sheep or panels. This sets the total height of each array at a maximum of 10 feet.
Showing how the panel height is appropriate to allow for sheep to graze under panels.
Solar tracking system with grazing sheep
The landscape is grazed once a year near the end of September for one month to reduce the need for mowing, save on labor and gas, and maintain a healthy soil chemistry. Graduate students at Temple University in Pennsylvania are conducting studies on the benefits of grazing, such as soil composition, a reduced mowing, and a reduction in spraying for weeds. Eight of the 16 Aurora project sites are grazed for research purposes. Occasional mowing is required if the area has a high-growth year. Minnesota Native Landscapes (MNL) developed the original native seed profile to help promote pollinator activity under the panels. The final seeding was completed by Westwood Professional Services. MNL also maintains the pollinator and native landscape. Bare-grounded spraying is used to kill off unwanted invasive species, such as thistle. These areas are then fenced off to prevent wildlife and sheep in the area. Soil samples are taken from sprayed and mowed areas for research. Lake Pulaski also promotes the bee population by allowing bee farmers to move their hives next to the site to help pollinate the area and grow healthier bees.
Lake Pulaski Native Landscape
Lake Pulaski Native Plant
Dustin Vanesse from Bare Honey holds up a hive panel covered in honey bees.
Lake Pulaski is not without maintenance needs. The enormity and complexity of the site requires technicians, plant experts, landscapers, and sheep farmers to ensure that the site function as designed. Enel Green Power does most of the technical maintenance, while MNL sprays and maintains the plants. The SolTech trackers require slightly more maintenance than pole trackers, and they can go offline due to storms, sheep knocking the sensors, and other natural causes. Background research is being conducted by ENEL to determine whether the tracking system is worth the extra maintenance. At the end of the site’s service life, which is typically 25 years, the developers hope to decommission the system and return the land to agriculture with richer soil than the gravel alternative and unharmed adjacent landscapes. The research from this site will help quantify the benefits that agrivoltaics can bring to both solar development and agriculture industries.
https://www.agrisolarclearinghouse.org/wp-content/uploads/2022/10/080422-agrisolar-40-scaled.jpg17092560Danielle Miskahttps://www.agrisolarclearinghouse.org/wp-content/uploads/2022/02/AgriSolar_stacked_1-338x400.pngDanielle Miska2022-10-19 16:30:142022-12-08 16:19:10Case Study: ENEL Green Power’s Lake Pulaski
Jack’s Solar Garden’s 2022 season caught on film by documentarian Chad Weber of Longmont, Colorado. Hear from our people, see the work that has been done, decide how the future of solar development on America’s farmland.
https://www.agrisolarclearinghouse.org/wp-content/uploads/2022/08/JSG-logo_RGB.jpg216310Carl Berntsenhttps://www.agrisolarclearinghouse.org/wp-content/uploads/2022/02/AgriSolar_stacked_1-338x400.pngCarl Berntsen2022-10-12 15:20:582022-10-12 15:21:20Watch: Agrivoltaics at Jack’s Solar Garden
Solar Projects Increase Tax Revenue in North Carolina
“Proposed large-scale solar facilities continue to draw opposition in North Carolina from critics who argue that swaths of panels are blights on the landscape and threaten farms in a state where agriculture is the leading industry. But those facilities have become a financial boon to local communities, particularly in rural areas with limited sources of tax revenue, a newly released study from the N.C. Sustainable Energy Association found.” – Greensboro
Dutch Research Studies Agrisolar
“During a four-year pilot project, Dutch independent research organization TNO, in collaboration with Vattenfall and Aeres University of Applied Sciences (UAS), is developing a sun-tracking algorithm that monitors various factors, such as crop yield, energy yield and the effects of herb strips, weather forecast, energy price and soil condition.” – Vattenfall
Small Farms in Maine are Good Candidate for Agrivoltaics
“Maine’s prevalence of small farms with low-lying, hand-harvested crops makes the state a good candidate for blending solar energy and food production on the same land, but farmers may not take the risk without funding for pilot projects.
Maine may be uniquely positioned for this emerging field, known as agrivoltaics or dual-use solar. Nationally, most successful projects so far have involved extras like solar grazing or pollinator habitat alongside panels at small farms with low-lying, hand-harvested crops — precisely the type of farms that dominate much of Maine’s agricultural sector.” – Energy News
https://www.agrisolarclearinghouse.org/wp-content/uploads/2022/05/agrisolar-roundup-photo-scaled.jpg25602378A. J. Pucketthttps://www.agrisolarclearinghouse.org/wp-content/uploads/2022/02/AgriSolar_stacked_1-338x400.pngA. J. Puckett2022-10-11 12:28:462022-10-11 12:28:46AgriSolar News Roundup: Solar and Taxes in NC, Dutch Agrisolar Research, Agrivoltaics in Maine
In this document, the Great Plains Institute (GPI) identified existing permitting practices and standards for solar development in the five PV-SMaRT case study states (New York, Georgia, Minnesota, Colorado, and Oregon) and other states across the nation. GPI then completed a “barriers and opportunities” assessment of existing practices to identify opportunities for reducing solar development soft costs and compliance costs, while maintaining or improving water quality outcomes.
https://www.agrisolarclearinghouse.org/wp-content/uploads/2022/01/AgriSolar-Library-.png400600A. J. Pucketthttps://www.agrisolarclearinghouse.org/wp-content/uploads/2022/02/AgriSolar_stacked_1-338x400.pngA. J. Puckett2022-10-06 12:00:182022-10-06 12:00:19Photovoltaic Stormwater Management Research and Testing (PV-SMaRT) Potential Stormwater Barriers and Opportunities
“The sun’s energy feeds grazing fodder and crops side-by-side with solar panels. ‘For farmers, it’s a two-income stream,’ said Brad Heins, professor of animal science at the University of Minnesota. That might mean planting crops that thrive in the shade cast by the panels. Or, in Heins’ case, it can mean cooling cows in the panels’ shade rather than resorting to expensive fans in a barn.
Heins and his colleagues are at the cutting edge of this new field (agrivoltaics), but they aren’t alone. There are hundreds of agrivoltaics projects underway in the US. Some work better than others, and some may wind up not working at all. But the best will lead to a greener and more profitable rural America that embraces renewable energy as an asset.” – The Washington Post
Agrivoltaic Site Under Construction in Oregon
“Construction is underway on a $1.5 million project that will allow Oregon State University researchers to further optimize agrivoltaic systems that involve co-developing land for both solar photovoltaic power and agriculture. The five-acre Solar Harvest project is located at Oregon State’s North Willamette Research and Extension Center in Aurora, Oregon, 20 miles south of Portland. It is the result of a partnership between Oregon State and the Oregon Clean Power Cooperative.
The problem with agrivoltaics research to date, Higgins said, is that it has occurred using solar arrays designed strictly for electricity generation rather than in combination with agricultural uses, such as growing crops or grazing animals. The solar array at the North Willamette Research and Extension Center is designed specifically for agrivoltaics research, with panels that are more spread out and able to rotate to a near vertical position to allow farm equipment to pass through, Higgins said.” – Oregon State University
Agrivoltaics is Shown to be a “Win-Win” for Food and Energy
“’With the right investment, innovation and robust collaboration, agrifood systems could become one of the world’s most hopeful solutions to climate change, as well as reduce poverty and provide nourishment for all,’ says Sean de Cleene, head of the Food Systems Initiative at the World Economic Forum (WEF).
‘The hallmark characteristic of agrivoltaics is the sharing of sunlight between the two energy conversion systems: photovoltaics and photosynthesis,’ says Jordan Macknick, lead energy-water-land analyst at the US National Renewable Energy Laboratory. ‘It essentially mimics what humans have been doing for hundreds of years with agroforestry – think shade-grown coffee – intentionally creating partial shade to create multiple layers of agricultural productivity on the same piece of land.’” – Energy Monitor
https://www.agrisolarclearinghouse.org/wp-content/uploads/2022/05/agrisolar-roundup-photo-scaled.jpg25602378A. J. Pucketthttps://www.agrisolarclearinghouse.org/wp-content/uploads/2022/02/AgriSolar_stacked_1-338x400.pngA. J. Puckett2022-10-05 14:57:202022-10-05 14:57:22AgriSolar News Roundup: The Power of Shade, Oregon Agrivoltaics Development, Agrivoltaics is a “Win-Win”
This resource is an overview of the Photovoltaic Storm Water Management Research and Testing (PV-SMaRT) project, which seeks to develop and disseminate research-based, solar-specific resources for estimating storm water runoff at ground-mounted PV facilities as well as storm water management and water quality permitting best practices.
https://www.agrisolarclearinghouse.org/wp-content/uploads/2022/01/AgriSolar-Library-.png400600A. J. Pucketthttps://www.agrisolarclearinghouse.org/wp-content/uploads/2022/02/AgriSolar_stacked_1-338x400.pngA. J. Puckett2022-10-05 12:48:362022-10-06 12:01:06Photovoltaic Storm Water Management Research and Testing: Barriers and Best Practices
Solar Power and Crops Grow Together in the Midwest
“Farmland is well suited for solar development of all kinds, for the same reasons it’s good for growing crops — it’s largely flat, drains well and gets lots of sun. Grazing land for animals like sheep can also be a good fit for solar. But what makes these Purdue research panels different is that they haven’t taken farmland out of production — they’re built over top of the corn itself.
Researchers want to see how the co-location strategy could be a salve to a growing strain between solar and farming in the Corn Belt — where residents and towns are pushing back on what they see as industrialization in rural communities. That includes communities in Wisconsin, where University of Wisconsin-Madison researchers are working with Alliant Energy to pursue similar research on university-owned land near Stoughton.” – The Journal Times
Renters in California Will Have Access to Community Solar
“Following Governor Gavin Newsom’s signature, California passed AB 2316, the Community Renewable Energy Act. The law creates a community renewable energy program, including community solar-plus-storage, to overcome access barriers for nearly half of Californians who rent or have low incomes.
A new market for residents to opt into renewable energy contracts opens in California following Gavin Newsom’s signature on the Community Renewable Energy Act. The law will now be evaluated and implemented by the California Public Utilities Commission.” – PV Magazine
Roughly 26 Million Acres Needed to Reach Zero-Carbon Goals
“By dedicating about 1% of the country’s land to solar energy—an area roughly the size of Kentucky—we could enable the nation to power itself with zero carbon emissions. Assuming fossil fuel and biomass energy would be replaced with green energy, it would take approximately 13 million acres of land to power today’s grid solely from solar facilities. It should be noted, however, that this amount would likely need to double to account for energy storage, electric vehicle (EV) charging stations, and the necessary increase in electrical infrastructure. But by dedicating about 26 million acres or 1% of the country’s land to solar energy—an area roughly the size of Kentucky—we could enable the nation to power itself with no carbon emissions.” – PV Magazine
https://www.agrisolarclearinghouse.org/wp-content/uploads/2022/05/agrisolar-roundup-photo-scaled.jpg25602378A. J. Pucketthttps://www.agrisolarclearinghouse.org/wp-content/uploads/2022/02/AgriSolar_stacked_1-338x400.pngA. J. Puckett2022-09-29 14:15:052022-09-29 14:15:07AgriSolar News Roundup: Agrisolar in the Midwest, Community Solar in California, Achieving Zero-Carbon Goals
Developer:Pine Gate Renewables Location: Medford, Oregon Size: 13 MW, 41 acres (scorecard) Soil type: Clay Annual precipitation: 49 inches Ground cover: A diverse pollinator seed mix of more than 30 types of native wildflowers and grasses
Funded by the U.S. Department of Energy’s (DOE) Solar Energy Technology office, the Photovoltaic Stormwater Management Research and Testing (PV-SMaRT) project from Great Plains Institute, DOE’s National Renewable Energy Laboratory, Fresh Energy, and the University of Minnesota is using five existing ground-mounted photovoltaic (PV) solar sites across the United States to study stormwater infiltration and runoff at solar farms. Together, the five sites represent a range of elevations, slopes, soil types, and geographical locations that will help solar developers and owners, utility companies, communities, and clean energy and climate advocates better understand how best to support solar projects and the host communities in which they are built, in particular lowering the costs of clean energy development while ensuring protection of the host community’s surface and ground waters.
Site Background
Situated on 41 acres of agricultural land that previously had a rich, long tradition of dairy grazing, the 13-megawatt (MW) Eagle Point Solar project owned by Pine Gate Renewables is part of the company’s SolarCulture Initiative, which promotes sustainable agriculture, collaboration with communities, and research for intelligent solar development. In the early morning—and again in the late evening—the panels at this site sit about one meter above the ground, rotating to three meters above the ground at midday. This allows mowing equipment to pass through when the site needs maintenance, an essential aspect of maintaining quality habitat at solar sites.
After determining that experienced landscapers would be able to restore and maintain the groundcover, Pine Gate decided to make Eagle Point one of the first projects for the SolarCulture program. A flat site with clay soil and 16 inches of annual rainfall, this site’s PV-SMaRT monitoring equipment was installed in August of 2020 and will be in operation through August of 2022.
Pine Gate hired landscape design consultant Regenerate to come up with a vegetation plan, and Understory Consulting, an ecological consulting and restoration service nonprofit operating in Oregon and northern California, was chosen to develop a multi-year plan to seed the site with native flowers and grasses tucked underneath the site’s tracking photovoltaic (PV) panels in two-in-portrait configuration. The seed mix was developed by Sean and Kathryn Prive, who Maggie Graham, a researcher with Oregon State University and ecologist at Understory, describes as the “dreamers behind the project who led the restoration at the site.” The multi-year plan developed by the Prives is intended to restore the understory of the solar site to a native prairie and support native and domesticated pollinators.
Remarking on the site’s dual uses, Maggie mentions the support the site provides for both pollinator habitat and seed collection for the Rogue Native Plant Partnership. Facilitated by Understory, the Rogue Basin Partnership, and the Medford, Oregon, District Office of the U.S. Department of Interior’s Bureau of Land Management, the Rogue Native Plant Partnership focuses on increasing the diversity and availability of native plant materials in the Rogue Valley, a much-loved valley region in southwestern Oregon known for its wild and scenic Rogue River that runs from Oregon’s famous Crater Lake out to the Pacific Ocean.
When asked about challenges the team has run into at the site, Maggie offers a typical answer: “Weeds.” She adds, “Any time you’re trying to take a piece of land and modify the vegetation, weeds are a challenge.” Drought, too, has introduced some hurdles for the site to clear, as much as Maggie notes that “Drought in the west is ongoing, and normal to a degree.”
Despite the challenges, Maggie says, “It was especially neat to uncover what this site holds that had been obscured by previous vegetation. When we eliminated the weed pressure from a lot of the rhizomatous, introduced grasses—grasses that almost creep and grow quickly across a piece of land—we found a strong native seed bank and bulb bank at the site. This included a field of camas, which is a culturally important plant in the region.”
Additionally, the site boasts co-benefits unique to pollinator-friendly solar farms—honeybee hive hosting, native seed collection, and research, too. “This site in particular has a local beekeeper, John Jacob, on site who has expressed an appreciation for the late season forage that the site provides.” Jacob, owner and founder of Old Sol Apiaries and former president of the Southern Oregon Beekeepers Association, determined that Eagle Point would be an ideal location for his honeybee hives, and an agreement with Pine Gate ensured that Jacob could place a few dozen hives on the perimeter of the farm.
The shade from the site’s solar panels increased the abundance of flowers under the panels and delayed the timing of their bloom, which provides forage later into the season, Maggie says. She adds, “The native seed collection is especially unique—it’s wonderful to have enough seed production at one site to help support other ecological restorations. We’re fortunate to benefit from Pine Gate’s willingness to use this site for repeated research projects. This is one of four that I know is happening at Eagle Point.”
Research Process
As discussed in the first PV-SMaRT case study on Connexus Energy’s Minnesota site, when engineers and researchers sit down to plan out or conduct analyses on clean energy developments like solar farms, they often utilize something called a design storm to test how well the site will hold up against an extreme weather event like a flood. A design storm is a test flood event of a certain magnitude—the higher the magnitude, the more intense the test storm. These tests help researchers and engineers to model and analyze rainfall and soil moisture, as well as to determine how fast excess water soaks into the ground during extreme storms.
Jake Galzki, a researcher with the University of Minnesota who is part of the modeling team for the PV-SMaRT project, says, “The Eagle Point site is the heaviest clay soil in the study, which is generally associated with lower infiltration rates. However, this site has a deeper crop rooting depth than some of the other sites, and Hydrus modeling showed slightly more infiltration than the shallower soils in the study. Approximately half of the 100-year design storm was infiltrated in the model simulations.”
Aaron Hanson, Energy Program Specialist at the University of Minnesota’s Institute on the Environment, says, “A key outcome of this project was to provide clarity on how solar farms and select ground cover impact storm water runoff at large-scale developments. This site is providing key insights to our model that in turn will help the solar industry, state and local governments, and communities understand the impacts and make better decisions.”
Based on the field research and modelling completed on this site and the other four sites across the country—New York, Georgia, Minnesota, and Colorado—the University of Minnesota team has also developed a stormwater runoff calculator. The modeling results from the calculator demonstrate that, under most site conditions, if soils are not compacted and deep-rooted vegetation is established, solar farms result in significant decrease in runoff compared to agricultural land uses. The calculator will be publicly available for use by local and state regulators, solar industry contractors and developers, and water quality advocates. GPI is modifying the interim best practice guide completed last fall to accompany the calculator and reflect the final modeling results.
Project Site Benefits
In the eyes of the project’s core team, the Eagle Point site presents some specific observations on another key aspect of the PV-SMaRT project’s focus: permitting. For reference, the federal government generally delegates administration of stormwater permitting, required under the Clean Water Act, to individual states. While based on a common foundation, state stormwater permitting processes will always reflect each state’s unique ecosystems and water quality priorities; therefore, solar projects must adapt to these differences.
Remarking on that adaptation process at the Eagle Point site, Brian Ross, vice president and project lead at Great Plains Institute says: “The Eagle Point site in Oregon gives us a West Coast example to demonstrate the national implications of the scientific findings, best practices, and final runoff calculator. Each state interprets the Clean Water Act regulations somewhat differently and looking at the Eagle Point site further demonstrates the applicability of the science across different regulatory and permitting regimes.”
Stakeholder Feedback and What’s Next
Like the other PV-SMaRT sites, data and observations from the Eagle Point site now serve as a benchmark as the project’s research team continues to gather insight about each of the five project sites across the country. Ongoing findings at the Eagle Point site further validate the project’s recommended best practices for solar developments and stormwater management: It is possible to help lower the soft costs of clean energy development and of ongoing maintenance, protect the host community’s surface and ground waters, create needed habitat, and sequester carbon in the soil, all while helping craft a sustainable clean energy future that will benefit everyone for generations to come.
https://www.agrisolarclearinghouse.org/wp-content/uploads/2022/09/Picture1.jpg203360Carl Berntsenhttps://www.agrisolarclearinghouse.org/wp-content/uploads/2022/02/AgriSolar_stacked_1-338x400.pngCarl Berntsen2022-09-26 08:30:482022-09-26 08:30:49Case Study: Oregon’s Planet- and Pollinator-friendly Solar Site
We may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.
Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.
Essential Website Cookies
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to deliver the website, refusing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.
We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.
We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.
Google Analytics Cookies
These cookies collect information that is used either in aggregate form to help us understand how our website is being used or how effective our marketing campaigns are, or to help us customize our website and application for you in order to enhance your experience.
If you do not want that we track your visit to our site you can disable tracking in your browser here:
Other external services
We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.
Google Webfont Settings:
Google Map Settings:
Google reCaptcha Settings:
Vimeo and Youtube video embeds:
Other cookies
The following cookies are also needed - You can choose if you want to allow them:
Privacy Policy
You can read about our cookies and privacy settings in detail on our Privacy Policy Page.