Tag Archive for: Agrivoltaics

This study aims to compare two agrivoltaic systems (stilted and vertical bifacial) from cradle-to-gate with the life cycle assessment method using a system expansion approach. Further, an unmodified agricultural production and total substitution of the latter by photovoltaic-modules (photovoltaic-scenario) are assessed.

This study investigates the use of a foldable solar panel system equipped with a dynamic tracking algorithm for agrivoltaics system (AVS) applications. It aims to simultaneously meet the requirements for renewable energy and sustainable agriculture.

This work looks at a variety of other hybrid FPV energy sources with varying technology readiness levels. This paper concludes with the possibility of integrating different renewable technologies with existing FPVs and highlights the boons of doing so with some examples

This study simulates the energy production, crop productivity and water consumption impacts of agrivoltaic array design choices in arid and semi-arid environments in the Southwestern region of the United States.

This document addresses that a wavelength-selective greenhouse could be a promising agrivoltaic system if it can provide an optimal balance between the microclimate suitable for plants and increasing energy production, an ambitious future goal being an energy independent and combined fully automated arboretum.

This paper introduces a novel heuristic framework on the acceptance dynamics of innovation diffusion processes as a key element to guide the examination of actor inertia and reorientation dynamics – depth, breadth, speed and directionality – over the diffusion of environmental innovations.

The main objective of this work is to provide a comprehensive insight into this new technology, various research and developments that have been reported and potential future development. The critical review indicates that advancements in this technology shall focus on improved floating structure design, robust instrumentation, wireless monitoring, and sensing capabilities.

This study introduces a new separation model capable of accurately estimating the diffuse component from the global photosynthetically active radiation and conveniently retrievable meteorological parameters.

A key challenge in agrivoltaic research involves identifying technologies applicable to a wide range of plant species and diverse geographic regions. This document addresses the adoption of a multi-experimental and multi-species approach to assess the viability of semi-transparent, spectrally selective thin-film silicon PV technology.

By Stacie Peterson, PhD, NCAT; and Heidi Kolbeck-Urlacher, Center for Rural Affairs
March 2024

Agrisolar practices, also called agrivoltaics, are the co-location of agriculture and solar within the landscape. They include solar co-located with crops, grazing, beekeeping, pollinator habitat, aquaculture, and farm or dairy processing. Agrisolar practices offer an opportunity to allow solar and agriculture to co-exist while meeting demands for clean energy and resilient rural infrastructure. One agrisolar approach is crop production under and adjacent to solar photovoltaics. Farms and research sites across the country demonstrate agrisolar as an opportunity to diversify farm revenue, decrease crop irrigation, increase crop yield, increase soil moisture, improve solar panel efficiency, and increase rural energy independence (Barron-Gafford, 2019; MacKnick, 2022; and Adeh, 2019).

Extreme heat and weather events from climate change, including the long-term drought in the American west, have led to water shortages, decreased crop yields, and increased heat stress for farm workers. Climate projections show this trend continuing, resulting in a marked decrease in crop yield in the future (Hsiagn, 2017). At the same time, an increasing population has elevated the need for nutritious local foods and food sovereignty.