Tag Archive for: Agrivoltaics

In this paper, the researchers applied the InVEST modeling framework to investigate the potential response of four ecosystem services (carbon storage, pollinator supply, sediment retention, and water retention) to native grassland habitat restoration at 30 solar facilities across the Midwest United States.

Decomposition models of solar irradiance estimate the magnitude of diffuse horizontal irradiance from global horizontal irradiance. These two radiation components are well-known to be essential for the prediction of solar photovoltaic systems performance. In open-field agrivoltaic systems, that is the dual use of land for both agricultural activities and solar power conversion, cultivated crops receive an unequal amount of direct, diffuse and reflected photosynthetically active radiation (PAR) depending on the area they are growing due to the non-homogenously shadings caused by the solar panels installed (above the crops or vertically mounted). It is known that PAR is more efficient for canopy photosynthesis under conditions of diffuse PAR than direct PAR per unit of total PAR. For this reason, it is fundamental to estimate the diffuse PAR component in agrivoltaic systems studies to properly predict the crop yield.

Solar electricity from solar parks in rural areas are cost effective and can be deployed fast therefore play an important role in the energy transition. The optimal design of a solar park is largely affected by income scheme, electricity transport capacity, and land lease costs. Important design parameters for utility-scale solar parks that may affect landscape, biodiversity, and soil quality are ground coverage ratio, size, and tilt of the PV tables. Particularly, low tilt PV at high coverage reduces the amount of sunlight on the ground strongly and leads to deterioration of the soil quality over the typical 25-year lifetime. In contrast, vertical PV or an agri-PV designed fairly high above the ground leads to more and homogeneous ground irradiance; these designs are favored for pastures and croplands. In general, the amount and distribution of ground irradiance and precipitation will strongly affect which crops can grow below and between the PV tables and whether this supports the associated food chain. As agrivoltaics is the direct competition between photosynthesis and photovoltaics. Understanding when, where and how much light reaches the ground is key to relate the agri-PV solar park design to the expected agricultural and electricity yields. We have shown that by increasing the minimum height of the system, decreasing the size of the PV tables and decreasing the coverage ratio, the ground irradiance increases, in particular around the gaps between the tables. The most direct way of increasing the lowest irradiance in a solar park design is to use semi-transparent PV panels, such as the commercially available bifacial glass-glass modules. In conclusion: we have shown that we can achieve similar ground irradiance levels in an east- and west-facing design with 77% ground coverage ratio as is achieved by a south-facing design at 53% coverage.


Agrivoltaics have been shown to contribute to achieving energy and food goals simultaneously through combining agricultural production with energy production, according to a recent report by Clean Technica. The report finds that global agrivoltaic energy production has grown from 5MW in 2012 to 2,900 MW in 2020.

The diverse options available through agrivoltaics can create opportunities for community interests, can reduce land use conflicts, and increase the economic value of farms using agrivoltaic systems, according to the report. A recent study conducted by Oregon State University estimates that the U.S. could meet renewable energy goals while saving water and creating a sustainable food system by converting just one percent of American farmland to agrivoltaics.

The report highlights multiple benefits for solar developers utilizing agrivoltaics. These benefits include reduced installation costs, increased PV performance, building closer links with agricultural land, reduced upfront risk, reduced legal risk and marketing opportunities. Land managers may also benefit from developing agrivoltaics by potentially extending growing seasons and water-use reduction, according to the report.

 To learn more about the details of each of these identified benefits, read the article here.

This report shows industrial processes for comprehensive solar integration. The paper discusses solar thermal energy-integration methods, cost estimations of system components and solar fractions. Multiple case study examples relevant to the dairy and biothermal industry are presented. Each case study includes three scenarios, and the results of each of those are discussed here.

This study discusses the analytics of tracking and backtracking for PV plants with various trackers after being converter to agrisolar plants or operations. Some of the details included in this report are: astronomical considerations, hedgerow crop height, tracking axis’s with and without crops, daily incidental radiation and solar declination, among other topics. These results could be used for implementing new strategies in future agrisolar operations.

This article discusses the mechanism of local micro-climate changes caused by fishery complementary photovoltaic (FPV) power plants to illustrate the impact of FPV power plants in a lake on the environment. It includes details about comprehensive albedo decreases relative to free water surface, water energy change and air vapor pressure deficits. The article also reveals that the FPV panels had a heating effect on the ambient environment, and that the range of this effect was related to water depth.

This study assessed the performance of a blind-type shading regulator that can automatically rotate semi-transparent photovoltaic blades installed on the greenhouse roof in response to sunlight variation.

This paper describes results of crop outputs for certain vegetables with differing gap spaces between rows to determine optimal crop production. It addresses nutrient levels, soil water content, and plant temperature below the panels. 

Solar energy is the fastest growing renewable energy source. It is predicted that 20-29% of global power will be sourced by solar by 2100. Solar energy requires larger land footprints and long-term commitments. Vegetation left under solar panels reduces soil degradation and opens up the potential for solar grazing as a dual income for farmers and vegetation management for solar utilities. Research conducted on multiple solar sites in Minnesota reveal there can be meaningful forage in 45% shade and 80% shade from solar panels. Furthermore, grazing sheep under solar panels produces both a higher content of carbon and nitrogen in the soil. Managed episodic grazing can be used as a strategy for carbon sequestration and vegetation management. Soil properties show an overall improvement and benefits depending on soil properties. Future work must be done to measure the long term soil carbon and hydrological properties.