Tag Archive for: Agrivoltaics

By Allen Puckett, NCAT Technical Writer 

August 2023 

In Ballground, Georgia, Jeffrey Whitmire and Chris Ayers, owners and operators of Chiktopia, are making use of an innovative solar technology that allows them to automate pastured poultry production while also practicing regenerative agriculture. Whitmire and Ayers, both students at the University of Georgia, produce and use fully automated solar-powered chicken coops on their operation, which they also sell to other farmers. In addition, Chicktopia provides regenerative grazing services to farmers. 

These solar-powered chicken coops assist in building the topsoil (regenerative agriculture) using chickens. The self-moving, automated chicken coops makes spreading manure and flock rotations much easier for farmers and results in healthier soil with a higher level of organic matter. Chiktopia suggests that automated equipment such as these solar chicken coops are mandatory for regenerative agriculture in the future.  

“At Chiktopia we believe sustainable farming practices are not only what are best for the planet but are also what create the happiest animals and the healthiest food. We help farmers minimize labor and maximize management. 

Our automated chicken coops use renewable energy systems, which automate the majority of the labor in the pastured-poultry process. Whether it be for broilers or egg-layers our coop will help save you time and labor.”Chiktopia 

Chiktopia aims to help build a more resilient food system across the United States using pasture-raised poultry, says Whitmire. 

The Regenerative Process 

If a farmer wants a section of land to be converted into a regenerative crop farm, Chiktopia provides that service and process. The first step in the process is to put egg-laying hens on the land in the mobile, solar-powered coops. Once the hens are rotated through the whole pasture, dairy cows are then put on the land to spread more manure. This last step of the grazing process allows the soil to sustain more vegetation through increased microbe quality and carbon sequestration. This improvement in soil health is known as regenerative grazing.  

Traditional Chicken Coops 

A traditional chicken coop is made of steel and must be manually lifted or moved using a handle or trailer hitch on one end. This requires much more manual labor than having an automated coop. Moving these traditional coops causes the pasture to be damaged when chickens spend too much time in one spot. The mobility of the new solar-powered coop keeps the chickens from destroying the pasture and allows the organic matter in the soil to regenerate. 

Solar-Powered Chicken Coops 

The solar-powered chicken coops are equipped with an automated temperature-control system, automated chicken feeder, sun-tracking solar array system, automated pressurized watering system, automated egg collector, and even heat lamps for young chicks. These coops have a traditional hitch for farmers who might prefer moving the coop with ATVs or trucks, but they can also be easily moved with a handheld remote control. 

When the coop moves, the birds don’t seem to mind at all. On the outside of the coup is an electrified perimeter fence that keeps the chickens in and predators out. When the hens are first put on a specific site, they spend a couple days in the coop getting comfortable with the new location, says Whitmire. They are then let out of the coop into the fencing area where they can roam. 

The floor of the mobile coop is lined with plastic netting that allows the bird manure to fall to the pasture below. Feeders are aligned on the two sides of the coop above the netting where the birds tend to spend most of their time. When they aren’t feeding, there is a ladder in the center of the coop that allows the birds to get up near the ceiling and roost on installments designed for chicken roosting.  

These automated, solar-powered chicken coops are available to order on  Chiktopia’s website. Depending on the needs of the farmer and the design of the coop, costs can vary, ranging from $8,000 to $20,000. One coop created by Chiktopia houses up to 400 birds. 

Predation Prevention and Shelter  

These coops provide effective predation prevention. The sturdy cover provided by the coop protects hens from hawks and other predatory birds when they are inside. The coop’s design also reliably provides protection from harsh weather and other conditions that may make the birds uncomfortable or unsafe. 

We keep our birds protected through using strong materials on the coop and an electrified fence. Solar panels also reflect light at raptors.” – Chiktopia  

Future Improvements 

Chiktopia plans to make improvements to their coops, including a rainwater diverter that puts water directly into the watering tank that will be available to the chickens.  

“Our birds have never been happier, and collecting eggs has never been easier! Daily movements are easy because the coop moves itself.” We were not able to move our birds on pasture before we had an automated Chiktopia coop.” Chiktopia customer 

By Allen Puckett, NCAT Technical Writer

In Harrodsburg, Kentucky, a flock of sheep is successfully grazing on a solar array at the E.W. Brown Farm, thanks to a collaboration between Shaker Village of Pleasant Hill and LG&E. This operation is Kentucky’s largest solar farm, consisting of 44,000 solar panels on 50 acres.  

Shaker Village’s flock grew from 125 Shetland sheep to more than 200 sheep—with 15 ram and ewe lambs born in Spring 2023, and more expected in the near future.  Of these 200 sheep, more than 50 moved to the Brown Solar facility in April of 2023. 

Photo credit: LG&E

Utilizing sheep on the solar array is not only more environmentally friendly, but it will also save the company and its customers money in the long-term by offsetting the cost of using traditional (gas-powered) lawn mowers. Managing vegetation with sheep is also safer than using traditional mowers and weed eaters beneath and around solar panels, according to the E.W. Brown farm. 

By using sheep to graze what is Kentucky’s largest solar farm, instead of lawn mowers, we’re being more environmentally friendly and holding down maintenance costs for our customers,” said Aron Patrick, director, Research and Development. “What started as a research project is laying the foundation for sustainably integrating more solar generation into our portfolio, and we hope the unique way we’re managing it can be a model for solar sites around the world.” – https://lge-ku.com/sheep  

Photo credit: The Harrodsburg Herald

Shaker Hill uses Shetland sheep, a heritage breed, on the E.W. Brown solar site. This breed originates from the highlands of Scotland and was common in the 19th century when the Shakers occupied the Pleasant Hill area. This allows Shaker Hill to connect their farm story directly to the Shaker’s agricultural history. Also, importantly, Shetlands are a smaller breed of sheep, and their size allows them to access the hard-to-reach areas of the solar arrays, whereas a larger breed might not be as efficient in maintaining vegetation growth. Shetlands are also known for their resilience in poor forage conditions, long life span and natural lambing ability.  

We’re happy to provide a green and sustainable way to help care for our neighbor’s land,” said Shaker Village farm manager Michael Moore. “Our farm gravitates toward heritage breeds, like Shetlands, that were raised by the Shakers of Pleasant Hill. This allows us to connect our farm story directly to the agricultural history of this region.” 

The 50 sheep moved to the site in April 2023 will graze throughout the spring, summer and fall, and then they will be transported back to the Shaker Village Farm for the winter months.  

Photo credit: LEX Today

There are also two Anatolian Pyrenees cross-bred dogs on-site that aid in protecting the sheep from predators. The guardian dogs live with and provide protection to the flock year-round. The team at Shaker Village manages the daily care of the dogs. 

The successful partnership between Shaker Village, LG&E has inspired the launch of the children’s book, Levi the Lamb’s Big Day. The book follows a sheep named Levi as he grazes a solar facility. The book was written by LG&E and KU manager of Technology Research and Analysis, Aaron Carter, and is available for purchase online or at the Shaker Village Gift Shop. 

Photo credit: WDRB

Shaker Village also has a “ewe tube” camera, where people can watch a live feed of the solar array. You can watch the sheep graze the facility here.  

Realizing that less effort has been made to reconcile solar development with biodiversity conservation, researchers in this article provide a framework that uses a unique land-sharing approach and is based on five pillars that cover key aspects of solar park planning and maintenance: (1) eco-smart siting in the landscape, which considers ecological interactions with the landscape matrix and trade-offs between multiple small vs. fewer large solar parks; (2) eco-smart park layout to address the ecological aspects of the spatial configuration of solar park infrastructure; (3) creation of diverse, novel grassland ecosystems with high ecosystem service provisioning capacity using a trait-based ecosystem design approach; (4) management of the novel ecosystem throughout the lifespan of the solar parks; and (5) ensuring stakeholder engagement to integrate this in a viable business model with high community acceptance.

$500 Million Solar Grazing Site to be Constructed in Wyoming 

“A proposed solar farm near Glenrock will cover 4,738 acres on land bordering the North Platte River, the equivalent of more than 3,500 football fields. When online, it will provide 500 megawatts of solar power and include two battery storage facilities. And there will still be room for the land to support a sheep-grazing operation after construction. 

The $500 million project is scheduled to begin construction in March 2024, and if all goes as planned, will come online in July 2026. The project will be built entirely on private land, and Willox said the developer and landowner have agreed to allow sheep grazing underneath the panels.” – cowboystatedaily 

French Study Shows Benefits of Agrisolar in Water Resource Management 

“France’s Sun’Agri has revealed the results of a test showing how agrivoltaic installations effectively lower temperature and relative humidity during periods of drought. Amidst an ongoing heatwave in southern France, Sun’Agri, a French agrivoltaics specialist, has released its latest findings on the impacts of its technology on water resource management. 

The company conducted an analysis on the effects of solar panels on apple, cherry, and nectarine trees across three sites in La Pugère, Etoile sur Rhône, and Loriol, southern France. The study demonstrated that the PV installations reduced temperature and increased relative humidity for the crops underneath the panels during hot weather, compared to reference areas without protection.” – PV Magazine  

New Bill Shows Bipartisan Support for Agrisolar Development 

“The latest demonstration of bipartisan support for agrivoltaics comes from the offices of US Senators Martin Heinrich of New Mexico and Mike Braun of Indiana. They introduced the new Agrivoltaics Research and Demonstration Act of 2023 in the Senate on May 31. 

This bill will research agrivoltaics — solar panel systems that can be deployed over crops that can benefit from partial shading during the day — and how they can help farmers get more out of their fields.” – Cleantechnica 

Things to Consider Before Signing a Solar Lease

“Part one of a three-part series on solar leases and considerations for lawyers and landowners. This is based on a presentation by Rusty Rumley, senior staff attorney, National Agricultural Law Center at the University of Arkansas System Division of Agriculture. The presentation was delivered at the tenth annual Mid-South Agricultural and Environmental Law Conference in Memphis, Tenn.” – Farmprogress.com 

Pennsylvania Group Pitches Farms on Solar Models

“Solar development on farmland is happening across central Pennsylvania — in some cases generating opposition from people who don’t like the look of solar panels and object to the loss of open land.

Pasa Sustainable Agriculture is working to introduce farmers to a different way of building solar farms that allows farming to continue and creates a smaller footprint. They hope it’s a way to address concerns in communities that have objected to large-scale solar. The model is called agrivoltaics, and it uses raised panels to generate solar energy while farming or livestock grazing continues beneath.” – stateimpact.npr.org

Australian Agrivoltaic Project Development Set to Move Forward

A “farmer-led” utility-scale solar PV and battery storage agrivoltaics project in New South Wales, Australia, has been granted development consent.

The state’s government has decided to grant consent to the development application for Blind Creek Solar Farm. The project was originated by a group of farmers and is now being developed by Octopus Australia and the national Clean Energy Finance Corporation (CEFC) together with its founders.” – energystorage.com

A Second Amendment Amendment

“California may be a national leader in both solar energy and agriculture, but it’s lagging behind other states in combining the two. Putting solar panels directly on active farmland is supported by the Biden administration, which provided $8 million for projects last year. The Midwest and Southeast lead the country in the number of what are also known as agrisolar projects.

Early research suggests agrivoltaics can not only help produce renewable electricity, but also improve crop yields. “Sounds almost too good to be true,” California Food and Agriculture Secretary Karen Ross quipped today during a panel on the practice held by the California Council on Science and Technology. In California, growers are more used to fighting utility-scale solar developers eyeing their land.

Ross highlighted a proposal by state Sen. Steve Padilla (D-San Diego), SB 688, that would set up a grant program at the State Energy Resources Conservation and Development Commission for agrivoltaics research projects. The bill does not appropriate any funding.” – Politico.com

The current work has a reviewed agrivoltaic projects in India and identified the management practices, constraints, cost econmoics and policy framework. A review of works done on solar park impact assessment and mitigation mechanism by agrivoltaics are done in detail. The work has considered agrivoltaics from a social aspect and focused on impacts due to loss of livelihoods and associated externalities under social impact classification. The social impact assessment concludes that, livelihood impacts can lead to extinction of cultures, urban migrations, growth of uncontrolled peri‑urban regions, the long-term impacts are beyond economics.

This study aims to discover how lettuce and potato crops are impacted by the shade of photovoltaic (PV) panels. Four scenarios are considered, with varying parameters such as latitude, azimuth, slope, and row distance between PV modules. The results reveal a significant potential for growing potatoes under PV modules. However, lettuce faces difficulties due to its high requirement for solar intensity (PAR), making it less adaptable to shade. The findings of this study indicate that crops like potatoes, which have a lower requirement for PAR, can be successfully cultivated in conjunction with PV systems.

In this study, researchers used field measurements and a plant hydraulic model to quantify carbon-water cycling in a semi-arid C3 perennial grassland growing beneath a single-axis tracking solar array in Colorado, USA. Although the agrivoltaic array reduced light availability by 38%, net photosynthesis and aboveground net primary productivity were reduced by only 6–7% while evapotranspiration decreased by 1.3%. The minimal changes in carbon-water cycling occurred largely because plant photosynthetic traits underneath the panels changed to take advantage of the dynamic shading environment. The results indicate that agrivoltaic systems can serve as a scalable way to expand solar energy production while maintaining ecosystem function in managed grasslands, especially in climates where water is more limiting than light.

As part of Berkeley Lab’s Community-Centered Solar Development (CCSD) project, this research set out to explore deep insights and perceptions from large-scale solar (LSS) stakeholders that only qualitative data can provide to identify key factors driving project success or threatened failure. Case studies, such as those utilized in this research, are uniquely adept at capturing the subjective experience of individuals and at identifying variables, structures, and interactions between stakeholders. Our case studies included 54 semi-structured interviews across 7 different LSS sites, representing a diversity of geographies, project sizes (MW), site types (i.e., greenfield, agrivoltaic, and brownfield / contaminated sites), zoning jurisdiction types, and more. In addition to local residents living in close proximity to these LSS sites, we interviewed other key stakeholders involved in the projects such as developers, decision-makers, utility representatives, landowners, and individuals from community-based organizations. The overarching aim of this case study research was two-fold: (1) to inform subsequent tasks in the CCSD research project (including an upcoming national survey of LSS neighbors), and (2) to provide insights into the following set of research questions: -What are the key positive and negative drivers leading to support and opposition to LSS projects? -To what extent do LSS projects exacerbate or mitigate perceived inequities and marginalization within hosting communities and how can those inequities be mitigated going forward? -What strategies can communities employ to align LSS development with local land-use plans and community needs and values? 

In this study, researchers tested hypotheses on the extent to which varying image content representing different types of grassland use affects the visual perception and acceptance of agrivoltaics. In the before-and-after comparison, the acceptance of agrivoltaics increased significantly only for grasslands and special crops. The results suggest that attitudes towards agrivoltaics are rather stable and cannot be easily modulated by additional information.