With the increasing demand for new sources of energy, solar power has become an attractive solution for the current energy crisis. Photovoltaic systems have been increasingly used in the form of solar panel arrays. However, despite the numerous advantages of solar technology, the energy-conversion efficiency of solar panels is low. Since these panels are stationary, they are also difficult to deploy and transport and are prone to damages and hindrance. The portable system prototype proposed in this paper can deploy the solar panels easily and retract them with minimal effort based on the Miura origami folding patterns and mechanical rotation of the panels. An active dual-axis solar tracking system based on tilt-and-swing mechanism is added to the system to maximize the efficiency of the solar energy conversion. This inexpensive solar-tracking system is composed of an Arduino microcontroller, photoresistors, and stepper motors. The mechanism of the proposed system is fully explained in this paper and it is demonstrated how this portable system can maximize efficiency of the energy conversion.