Plant pest spraying machines are now starting to develop using a variety of technologies ranging from diesel to electric power. However, this technology has problems such as limited fuel capacity in diesel engines and a lack of electricity demand for electric batteries. If the sprayed area is too large, the capacity for fuel and battery requirements is insufficient. In this study, we will explain how to apply solar cells to make a plant pest spraying machine so that when spraying will occur simultaneously the process of charging or charging the battery by solar power. So that the need for battery capacity is met for spraying over a large area. The process of making this tool is done by assembling several components such as solar panels, SCC (solar charge controller), spray tanks and lithium batteries.
Tag Archive for: solar farming
In this paper, new models of solar light trap was proposed which will be the most effective IPM tool for the monitoring of insect pests and their monitoring of insect pests and their mechanical control in the field of agriculture, provide no harm to the nature and also have low cost involvement so that it can be utilized by most of the farmers. For that purpose firstly a model of light trap box with iron structure was developed, then a solar light system including solar panel, charging unity, battery and LED bulb installed with the light trap box so that this solar light trap can monitor and control the insect pests of different crops effectively. It is the most effective IPM tool which provide better safeguard to the nature in comparison to the other method of pest control.
Kale, chard, broccoli, peppers, tomatoes, and spinach were grown at various positions within partial shade of a solar photovoltaic array during the growing seasons from late March through August 2017 and 2018. The rows of panels were orientated north-south and tracked east to west during the daylight hours, creating three levels of shade for the plants: 7% of full sun, 55-65% of full sun, and 85% of full sun, as well as a full sun control outside the array. Average daily air temperature at canopy height was within +\- 0.5oC across the shade conditions. Over two field seasons, biomass accumulated in correction with the quantity of photosynthetically active radiation (PAR). Kale produced the same amount of harvestable biomass in all PAR levels between 55% and 85% of full sun. Chard yield was similar in PAR levels 85% and greater. Tomatoes produced the same amount harvestable biomass in all PAR levels greater than 55% of full sun. Broccoli produced significantly more harvestable head biomass at 85% than at full sun irradiance but required at least 85% of full PAR to produce appreciable harvestable material. Peppers generated harvestable fruit biomass at PAR of 55% of full sun or less, but yielded best at 85% of full sun or more. Spinach was sensitive to shade, yielded poorly under low PAR, but increased biomass production as PAR increased. Microclimate variations under PV arrays influence plant yields depending on location within a solar array. Adequate PAR and moderated temperature extremes can couple to produce crop yields in reduced PAR environments similar to and in some cases better than those in full sun. Results from our study showed that careful attention must be made when developing PV arrays over the crops and when choosing which crops to plant among the arrays.
As an answer to the increasing demand for photovoltaics as a key element in the energy transition strategy of many countries—which entails land use issues, as well as concerns regarding landscape transformation, biodiversity, ecosystems and human well-being—new approaches and market segments have emerged that consider integrated perspectives. Among these, agrivoltaics is emerging as very promising for allowing benefits in the food–energy (and water) nexus. Demonstrative projects are developing worldwide, and experience with varied design solutions suitable for the scale up to commercial scale is being gathered based primarily on efficiency considerations; nevertheless, it is unquestionable that with the increase in the size, from the demonstration to the commercial scale, attention has to be paid to ecological impacts associated to specific design choices, and namely to those related to landscape transformation issues. This study reviews and analyzes the technological and spatial design options that have become available to date implementing a rigorous, comprehensive analysis based on the most updated knowledge in the field, and proposes a thorough methodology based on design and performance parameters that enable us to define the main attributes of the system from a trans-disciplinary perspective. The energy and engineering design optimization, the development of new technologies and the correct selection of plant species adapted to the PV system are the areas where the current research is actively focusing in APV systems. Along with the continuous research progress, the success of several international experiences through pilot projects which implement new design solutions and use different PV technologies has triggered APV, and it has been met with great acceptance from the industry and interest from governments. It is in fact a significant potential contribution to meet climate challenges touching on food, energy, agriculture and rural policies. Moreover, it is understood—i.e., by energy developers—as a possible driver for the implementation of large-scale PV installations and building integrated agriculture, which without the APV function, would not be successful in the authorization process due to land use concerns. A sharp increase is expected in terms of number of installations and capacity in the near future. Along this trend, new concerns regarding landscape and urban transformation issues are emerging as the implementation of APV might be mainly focused on the efficiency of the PV system (more profitable than agriculture), with insufficient attention on the correct synergy between energy and food production. The study of ecosystem service trade-offs in the spatial planning and design for energy transition, to identify potential synergies and minimize trade-offs between renewable energy and other ecosystem services, has been already acknowledged as a key issue for avoiding conflicts between global and local perspectives. The development of new innovative systems (PV system technology) and components (photovoltaic devices technology) can enhance the energy performance of selected design options for APV greenhouse typology.
Worldwide, water is becoming scarcer and more expensive due to the effects of climate change. Significant adaptation will be necessary to ensure adequate supply and efficient use of a diminishing resource. This reduction in the supply of water will affect agriculture and will require a change in focus from increasing productivity of land to increasing productivity per unit of water consumed.
Solar photovoltaic (PV) technology is being deployed at an unprecedented rate. To this end, we investigated critical soil physical and chemical parameters at a revegetated photovoltaic array and an adjacent reference grassland in Colorado, United States.
This study, performed by a research group that includes AgriSolar Clearinghouse partners Greg-Barron Gafford and Jordan Macknick, describes an integrative approach for the investigation of the co-location of solar photovoltaics and crops, and the potential for co-located agrivoltaic crops in drylands as a solution for the food-energy-water nexus impacts from climate change.
The research focused on three common agricultural species that represent different adaptive niches for dryland environments: chiltepin pepper, jalapeño, and cherry tomato. The researchers created an agrivoltaic system by planting these species under a PV array—3.3m off the ground at the lowest end and at a tilt of 32°—to capture the physical and biological impacts of this approach. Throughout the average three-month summer growing season, researchers monitored incoming light levels, air temperature and relative humidity continuously using sensors mounted 2.5m above the soil surface, and soil surface temperature and moisture at 5-cm depth. Both the traditional planting area (control) and agrivoltaic system received equal irrigation rates, with two irrigation scenarios—daily irrigation and irrigation every 2ays.
The researchers found that shading from the PV panels can provide multiple additive and synergistic benefits, including reduced plant drought stress, greater food production and reduced PV panel heat stress. The agrivoltaic system conditions impacted every aspect of plant activity, though results and significance varied by species. The total fruit production was twice as great under the PV panels of the agrivoltaic system than in the traditional growing environment
Cumulative CO2 uptake was 65% greater in the agrivoltaic installation than in the traditional growing area. Water use efficiency was also 65% greater, indicating that water loss to transpiration was equal between the treatment areas. The increased productivity in the agrivoltaic system is probably due to an alleviation of multiple stress interactions from heat and atmospheric drought.
Because PV panels are sensitive to temperature, the cooling of panels below daytime temperatures of 30 °C positively impacts their efficiency. In this study, researchers found that the PV panels in a traditional ground-mounted array were significantly warmer during the day and experienced greater within-day variation than those over an agrivoltaic understory. Researchers attribute these lower daytime temperatures in the PV panels in the agrivoltaic system to a greater balance of latent heat energy exchange from plant transpiration relative to sensible heat exchange from radiation from bare soil. Across the core growing season, PV panels in an agrivoltaic system were ~8.9+0.2 °C cooler in daylight hours. This reduction in temperature can lead to an increase in PV system performance. Using the system advisor model (SAM) for a traditional and a colocation PV system in Tucson, AZ, researchers calculated that impact from temperature reductions from the agrivoltaic system would lead to a 3% increase in generation over summer months and a 1% increase in generation annually.
These results show the additive benefits of agrivoltaics, to both crop production and energy production, as well as the impacts to ecosystem services such as local climate regulation, water conservation, and drought resiliency.
The article concerns the performance of a solar water heater with gas backup and an air-source heat-pump water-heater at a dairy farm in Ireland. The publication discusses the heater’s affect on energy efficiency and it’s relation to renewable energy, emission and target interactions as identified in the document.
Across the U.S., many cities, counties, and states are taking advantage of affordable renewable energy sources, such as solar and wind energy. Over the past nine years, the price of installing solar energy projects has decreased by 70 percent, while the average cost of constructing a wind energy project has fallen by more than 67 percent per kilowatt hour since 1983.1,2 This rapid decline in cost has empowered Americans to embrace affordable, clean, and renewable energy. While all investments in conservation promote environmental improvement, developers can follow a few best practices to ensure project success. For example, native seed mixes offer the greatest return on investment when aiming to provide ecosystem services, such as habitat for pollinators and wildlife, as well as improved water quality and soil health. If possible, project developers should prioritize native seed selections over naturalized, non-invasive species of vegetation. Pollinators play a critical role in the robust food, fuel, and fiber production economy of the Midwest. By pollinating agricultural crops, this group of insects is crucial to ensuring economic and food security. Research shows the populations of all pollinators, including honey bees, native bees, and monarch butterflies, were three-and-a-half times greater on sites with investments in the reestablishment of native vegetation in central Iowa when compared to control sites. Seeding a site with native and naturalized, non-invasive vegetation presents opportunities for the introduction of livestock grazing for management. For example, pollinator-friendly solar sites have seen success with rotational grazing of sheep as a management option. Sheep are recommended for pollinator-friendly solar projects because goats and cattle could cause damage to on-site equipment. Renewable energy sources, such as wind and solar, are growing rapidly. As the industry continues to create hundreds of thousands of jobs, stimulate local and state tax revenue, and reduce greenhouse gas emissions, new investments in electric transmission infrastructure will inevitably occur. By developing resources for site managers of renewable energy infrastructure, public officials at all levels are well positioned to add value to these projects. Investments in native and naturalized, non-invasive vegetation ensure habitat for at-risk pollinators, including the monarch butterfly, while creating habitat for vulnerable wildlife species. These species are crucial for economic and food security in the Midwest and underwriting renewable energy projects with perennial vegetation improves quality of life for all.
Agrivoltaic systems (AVS) offer a symbiotic strategy for co-location sustainable renewable energy and agricultural production. This is particularly important in densely populated developing and developed countries, where renewable energy development is becoming more important; however, profitable farmland must be preserved. As emphasized in the Food-Energy-Water (FEW) nexus, AVS advancements should not only focus on energy management, but also agronomic management (crop and water management). The researchers critically review the important factors that influence the decision of energy management (solar PV architecture) and agronomic management in AV systems. The outcomes show that solar PV architecture and agronomic management advancements are reliant on (1) solar radiation qualities in term of light intensity and photosynthetically activate radiation (PAR), (2) AVS categories such as energy-centric, agricultural-centric, and agricultural-energy-centric, and (3) shareholder perspective (especially farmers). Next, several adjustments for crop selection and management are needed due to light limitation, microclimate condition beneath the solar structure, and solar structure constraints. More importantly, a systematic irrigation system is required to prevent damage to the solar panel structure. The advancements of AVS technologies should not only focus on energy management, but also food (agriculture) and water management, as these three factors are nexus domains. Since the management of agriculture (crop) and water are parts of agronomic management, future enhancements should emphasize the importance of balancing the two. The agronomic management in AV systems that requires improvement includes crop selection recommendations, improved crop management guidelines, and a systematic irrigation system that minimizes environmental impacts caused by excess water and subsequent agrichemical leaching that could affect the solar PV structure. In conclusion, the advancements of AVS technology are expected to reduce reliance on nonrenewable fuel sources and mitigate the effects of global warming, as well as addressing the food-energy-water nexus’s demands.