Collocating solar photovoltaic (PV) technology with agriculture is a promising approach towards dual land productivity that could locally fulfil growing food and energy demands particularly in rural areas. This ’agrivoltaic’ (AV) solution can be highly suitable for hot and arid climates where an optimized solar panel coverage could prevent excessive thermal stress during harsh weather thereby increasing the crop yield and lowering the water budget. One of the concerns with using standard fixed tilt solar array structure that faces north/south (N/S) direction for AV farming is the spatial heterogeneity in the daily sunlight distribution for crops and soil water contents, both of which could affect crop yield. Dynamic tilt control through a tracking system can eliminate this problem but could increase the system cost and complexity. Here, we investigate east/west (E/W) faced vertical bifacial panel structure for AV farming and show that this could provide a much better spatial homogeneity for daily sunlight distribution relative to the fixed tilt N/S faced PV structure implying a better suitability for monoculture cropping.
Tag Archive for: solar farming
This report discusses the goal of agrisolar systems, which would generate electricity from raised solar panels and allow crop cultivation under the solar panels, and their development. Details of the report include the effect of raised solar panels and their effect on shading, which affects factors of the crops development. This information can be used to potentially optimize the design of agrisolar operations to most effectively benefit the crops included in the agrisolar operation.
This study examines a variety of percentages of the total area covered with shade produced by photovoltaic modules on rooftop lettuce crops. The results of the study suggest that in areas of high radiation and temperature(s), it is possible to use the same area on rooftops to produce photovoltaic energy and effectively cultivate plant species that demand little sunlight, such as lettuce. These conclusions mean that rooftop agrisolar is effective when the strategies in this study are taken into consideration.
Agrisolar is a rapidly expanding sector with incredible potential. It brings together two major sectors of our society and economy: agriculture and energy. The goal of this guide is to draw on past experiences, to take stock of “what works” and “what doesn’t,” in order to advise local and international actors on successfully developing Agrisolar. This first edition of the SolarPower Europe Agrisolar Best Practices Guidelines takes a step in joining forces with agricultural stakeholders to better understand how the solar and agricultural sector can work more closely together, enhancing synergies to advance the energy and climate transition. Every Agrisolar project is unique as it must be adapted to the local agronomical, environmental, and socioeconomic conditions of the project site, and adapted to the needs of farmers and other relevant stakeholders. The most important element to ensure that Agrisolar projects perform effectively as agricultural and photovoltaic projects is to begin by clearly defining a Sustainable Agriculture Concept. Defining a Sustainable Agriculture Concept means assessing how to improve the sustainability of the agricultural practices carried out on site, assessing whether the project can provide local ecosystem services, assessing how it can be best integrated within the local social and economic setting, all while generating clean electricity. Following best practices throughout all 19 areas identified in these guidelines will ensure Agrisolar projects deliver tangible benefits, as planned in the Sustainable Agriculture Concept.
Evaluating the albedo impact on bifacial PV systems based on case studies in Denver, USA and Västerås, Sweden. This study aims to develop a simulation and optimization tool for bifacial photovoltaic (PV) modules based on the open-source code OptiCE and evaluate dynamic and static albedo impact on a bifacial PV system. Further, a review of the market price development of bifacial PVs’ and an optimization to maximize energy output was conducted.
Agrivoltaic systems, consisting of the combination of photovoltaic panels (PVPs) with crops on the same land, recently emerged as an opportunity to resolve the competition for land use between food and energy production. Such systems have proved efficient when using stationary PVPs at half their usual density. Dynamic agrivoltaic systems improved the concept by using orientable PVPs derived from solar trackers. They offer the possibility to intercept the variable part of solar radiation, as well as new means to increase land productivity. The matter was analysed in this work by comparing fixed and dynamic systems with two different orientation policies. Performances of the resulting agrivoltaic systems were studied for two varieties of lettuce over three different seasons.
Kale, chard, broccoli, peppers, tomatoes, and spinach were grown at various positions within partial shade of a solar photovoltaic array during the growing seasons from late March through August 2017 and 2018.
This paper presents a novel 3D agrovoltaic modelling tool developed in python which enables technical and economical evaluation of potential agrovoltaic designs. It has been designed and applied for fruit crops which typically have a crucial flowering period. To illustrate the potential of this tool, a case study for pear trees in Bierbeek, Belgium is shown. While many geometrical parameters of agrovoltaic systems are fixed in practice, however, there is also the need to model the impact of PV modules on the tree light interception. The results of the modelling show that the amount of solar radiation depends on the modules used, with semi-transparent modules offering better light distribution and reduced crop loss. Based on the modelling, a prototype agrovoltaic set-up with pear trees and semitransparent modules has been built in Bierbeek, Belgium.
A slide presentation by Ku Leuven focusing on suitable sites for agrivoltaics in a pear orchard.
Developing methods for the sustainable coproduction of food, energy and water resources has recently been recognized as a potentially attractive solution to meeting the needs of a growing population. However, many studies have used models, but have not performed an actual experiment to directly validate all their predictions. Here, we report a recently-constructed test site on the ACRE farm in West Lafayette, Indiana, consisting of single-axis trackers in a novel configuration atop a maize test plot. We present a methodology to measure irradiance therein with 10-minute temporal resolution, which allows us to validate prior PV aglectric farm irradiance models. In spring 2019, an experimental aglectric system was constructed at the Purdue University Agronomy Center for Research and Education (ACRE) farm. This experiment, commonly referred to as the ACRE Solar Array, comprises of 4 single-axis solar trackers implemented in east-west tracking mode. The solar trackers are raised 20 ft above ground level and welded to steel I-beams for compatibility with current high-yield agricultural practices such as mechanized farming. This work modifies and leverages a previously developed ray-tracing model that calculates irradiance reaching the ground. Using the open-source library PVLib, spatial maps of intensity variation are calculated for direct and diffuse light. Solar input was based on astronomical data calculated in PVLib and historical weather data from West Lafayette. The percentage reduction in irradiance for a simulated structure in comparison with an open field is calculated and referred to as shadow depth (SD). The model is capable of simplistic systems as well as custom array layouts such as the ACRE Solar Array. A methodology for validation of spatial and temporal irradiance maps of non-uniform shadow distributions has been evaluated and shows significant agreement.