Tag Archive for: Solar Grazing

Grasslands and croplands located in temperate agro-ecologies are ranked to be the best places to install solar panels for maximum energy production. Therefore, agrivoltaic systems (agricultural production under solar panels) are designed to mutually benefit solar energy and agricultural production in the same location for dual-use of land. However, both livestock farmers and energy companies require information for the application of efficient livestock management practices under solar panels. Therefore, this study was conducted to compare lamb growth and pasture production under solar panels and in open pastures in Corvallis, Oregon in spring 2019 and 2020. Averaged across the grazing periods, weaned Polypay lambs grew at 120 and 119 g/head/d under solar panels and open pastures, respectively in spring 2019 (P=0.90). Although a higher stocking density (36.6 lambs/ha) at the pastures under solar panels was maintained than open pastures (30 lambs/ha) in the late spring period, the liveweight production between grazing under solar panels (1.5 kg ha/d) and open pastures (1.3 kg ha/d) were comparable (P=0.67). Similarly, lambs liveweight gains and liveweight productions were comparable in both pasture types (all P>0.05). The daily water consumption of the lambs in spring 2019 were similar during early spring, but lambs in open pastures consumed 0.72 l/head/d more water than those grazed under solar panels in the late spring period (P<0.01). However, no difference was observed in water intake of the lambs in spring 2020 (P=0.42) The preliminary results from our grazing study indicated that grazing under solar panels can maintain higher carrying capacity of pasture toward summer, and land productivity could be increased up to 200% through combining sheep grazing and solar energy production on the same land. More importantly, solar panels may provide a more animal welfare friendly environment for the grazing livestock as they provide shelter from sun and wind.

The specific intent of this study was to draw insight about solar development from participant experience, and responses indicate that the most considerable opportunities and barriers center on social acceptance and public perception issues. Perspectives about the opportunities and barriers to agrivoltaic development were captured via interviews with solar industry professionals, and inductive analysis revealed that interviewees were most focused on opportunities and barriers that correspond with Wüstenhagen et al.’s three dimensions of social acceptance: market, community, and socio-political factors.

The Morris Ridge Solar Project is a proposed solar farm on approximately 1,060 acres in the Town of Mount Morris, southern Livingston County, New York. The project site is within an area farmed primarily in a cash cropping rotation. The Morris Ridge Solar project is being designed to integrate agricultural uses, including a managed grazing system that utilizes sheep grazing to control vegetation growth under and around the solar panels. Sheep grazing is a method of vegetation control used on solar facilities around the world and is increasingly being used in the Northeastern United States to provide a solution that can promote and incorporate an agricultural use within a solar photovoltaic facility. The Morris Ridge Solar project is also being planned to accommodate honeybees and honey production. Through the incorporation of pollinator-friendly vegetation into the project design, solar farms can create suitable habitat for honeybees. Co-locating honeybee apiaries and solar farms has been proven to be a successful method of integrating agricultural use at solar farms throughout North America. The Morris Ridge Solar project will seek to contract the grazing through local farmers who either currently own sheep or wish to expand sheep enterprises as part of their farm business. To engage with these farmers and determine which candidates are best fit for the contracted grazing, MRSEC and AVS have worked to conduct outreach locally and assess interest from the farm community. Initial interest has been solid, with several area farmers expressing interest in contract grazing either parts of the site or the entire site. The solar site will be seeded with a seed mix designed for the special circumstances of the site: grazing, honey production, low-growing, shade and sun tolerant. The seed mix will be selected based on soil testing results, which is scheduled for fall 2020. The seed mix will be something akin to Ernst Conservation Seed’s Fuzz & Buzz Mix. A mix of pasture grasses, legumes (all flowering plants), and forbs (more flowers), it is a diverse and robust blend designed to balance the needs of agrivoltaic production. The seed mix is integral to the vegetation management plan. The vegetation management is planned to support perennial pastures that nearly always have flowering plants. This perennial rotation of the sheep keeps vegetation in sequence of rest and grazing. This sequence is cyclical, and the structure allows the legumes and forbs time to flower from May to October. With the planned rotation of the sheep, the availability of nectar from flowering plants across a large area that are stimulated to bloom consistently throughout the season should allow the bees to thrive. EDF-Renewables has taken care to strategically plan for a high level of agricultural integration at the Morris Ridge Solar Facility. The solar facility is proposed to create a new opportunity for a livestock grazier and a commercial honey producer in the region. Over the rest of 2020, AVS and EDF-Renewables will work to find the right farm partners to facilitate the plans identified above. The construction plans will be fine-tuned with a grazing operation in mind. The future site graziers will have several years to bring their livestock operations up to speed in harmony with the construction schedule. Our team looks forward to project success that incorporates and strengthens the regional agricultural community in the Morris Ridge Solar Project.

This publication reviews planning the use of land for large-scale utility solar energy.

Utility-scale solar development has expanded rapidly across the U.S. in recent years, driven by declining costs and improving technology. The most recent Lazard levelized cost of energy (LCOE) analysis shows utility-scale solar now equivalent to or below the cost of conventional generation, with a price range of $36-44 per megawatt-hour (MWh). Thirty-two gigawatts (GW) of utility-scale solar have been installed in the United States to date, and another 50 GW are planned or in development. By 2030, the Department of Energy SunShot program estimates that solar development will encompass between 1 to 3 million acres of land. As the geographic footprint of solar increases beyond the arid southwestern United States, so too has interest in the land use under the panels. In these new geographies, including the Midwest and Northeast, solar is often sited on agricultural land. The ideal tract of land for solar development is flat, dry, unshaded, and close to transmission and load. All of these characteristics are associated with farmland, raising possible tensions between solar and farming as competing land uses. For the most part, solar developers plant shallow-rooted turfgrass or spread gravel under panels, rendering that land unproductive aside from the generation of electricity. However, the co-location of solar projects and innovative vegetation management plans offers the potential to ameliorate this potential land use conflict. Improving the “landscape compatibility” of utility-scale solar has become a topic of great interest in the energy, land use and agricultural research communities. Examples of co-location include growing crops underneath solar trackers; grazing cattle or sheep among elevated solar panels that also provide shade for the livestock; and installing solar in the non-irrigated corners of center-pivot irrigation plots. These approaches can be grouped under the recently coined umbrella term “agrivoltaics.” The researchers developed an Excel-based modelling tool to understand the tradeoffs, costs and benefits between maintaining land as conventional farmland or converting a portion of it to either a conventional solar facility or a pollinator-friendly solar facility. The model accounts for spatial, economic and environmental differences across three counties in South-central Minnesota: Fillmore, Hennepin and Rock. The model is designed as a cash-flow project finance model that incorporates monetized environmental and social costs and benefits. As project finance is the predominant method for financing solar projects in the United States, and a large proportion of a project’s financial return is delivered through preferred tax status and tax credits, they modeled both pre- and post-tax cash flows from the solar projects. Their model also includes a cash-flow operating model for a conventional soy or corn farm. For all land uses, the model incorporates the monetized value of environmental externalities, including carbon emissions, soil erosion and groundwater recharge. Not all externalities and ecosystem services were modeled, due to data limitations and difficulties in quantifying benefits such as habitat creation and biodiversity. We created multiple scenarios within the model to analyze differences in private and social value streams across counties, crop type, and a range of upside and downside inputs. The model outputs are a series of cost-benefit analyses comparing the three main land uses — pollinator-friendly solar, conventional solar, and farming. The financial return of each use varies by crop type, location and upside/downside scenarios. Solar development in Minnesota and across the Midwest is poised to continue on land traditionally devoted to conventional agriculture. Growing interest in low-impact solar development and co-location of solar projects with pollinator-friendly plants represents an opportunity to mitigate energy-versus-food tensions and provide additional benefits to agriculture, ecosystems, and private developers alike. The model presented in this paper takes an important step towards quantifying and monetizing the benefits of pollinator-friendly solar development as a land use option in Minnesota. Understanding the full monetary value of pollinator-friendly solar is necessary to design policies that efficiently and effectively support its development in locations that optimize project value. As the practice continues to gain popularity, there is a pressing need for additional research that clarifies the value of ecosystem services created by this innovative land use. Improved understanding of the diverse social and private benefits of pollinator-friendly solar will allow for strategic deployment of these projects — and will maximize returns for all stakeholders.

Renewable energy is a promising alternative to fossil fuel based energy, but its development can require a complex set of environmental tradeoffs. A recent increase in solar energy systems, especially large, centralized installations, underscores the urgency of understanding their environmental interactions. Synthesizing literature across numerous disciplines, the researchers review direct and indirect environmental impacts both beneficial and adverse of utility scale solar energy (USSE) development, including impacts on biodiversity, land use and land cover change, soils, water resources, and human health. Additionally, they review feedbacks between USSE infrastructure and land atmosphere interactions and the potential for USSE systems to mitigate climate change. Several characteristics and development strategies of USSE systems have low environmental impacts relative to other energy systems, including other renewables. We show opportunities to increase USSE environmental co benefits, the permitting and regulatory constraints and opportunities of USSE, and highlight future research directions to better understand the nexus between USSE and the environment. Increasing the environmental compatibility of USSE systems will maximize the efficacy of this key renewable energy source in mitigating climatic and global environmental change. Utility scale solar energy systems are on the rise worldwide, an expansion fueled by technological advances, policy changes, and the urgent need to reduce both our dependence on carbon intensive sources of energy and the emission of greenhouse gases to the atmosphere. Recently, a growing interest among scientists, solar energy developers, land managers, and policy makers to understand the environmental impacts both beneficial and adverse of USSE, from local to global scales, has engendered novel research and findings. This review synthesizes this body of knowledge, which conceptually spans numerous disciplines and crosses multiple interdisciplinary boundaries. The disadvantageous environmental impacts of USSE have not heretofore been carefully evaluated nor weighted against the numerous environmental benefits particularly in mitigating climate change and co benefits that solar energy systems offer. Indeed, several characteristics and development strategies of USSE systems have low environmental impacts relative to other energy systems, including other renewable energy technologies. Major challenges to the widespread deployment of USSE installations remain in technology, research, and policy. Overcoming such challenges, high lighted in the previous sections, will require multidisciplinary approaches, perspectives, and collaborations. This review serves to induce communication across relatively disparate disciplines but intentional and structured coordination will be required to further advance the state of knowledge and maximize the environmental benefits of solar energy systems at the utility scale.

This guide has been developed to share knowledge and learnings from agrisolar practices around Australia and the world, to assist proponents of utility-scale solar, and the landholders and farmers who work with them, to integrate agricultural activities into solar farm projects. As solar grazing is the dominant form of agrisolar for utility-scale solar, this guide has a strong focus on sharing the knowledge and learnings from Australian projects that have integrated solar grazing practices to date, providing case studies from solar farms currently employing solar grazing, information on the benefits of solar grazing for proponents and farmers, and practical guidance for both farmers and proponents considering solar grazing. A further aim is to contribute to the local knowledge of trends and research from international markets about a broader range of agrisolar models which could be considered for the Australian context. With the deployment of large utility-scale solar farms commencing in Australia from around 2015 onwards, the local experience of agrisolar practices is still developing and currently dominated by the practice of sheep grazing on solar farms. The first known Australian solar farm to implement agrisolar practice was the Royalla Solar Farm which began grazing sheep in 2015. Since then, there have been over a dozen solar farms that have introduced grazing, and it has proved to be an effective partnership for both solar farm proponents and graziers. ‘Solar grazing’, as it is known, is the most prevalent form of complementary land use for utility-scale solar farms. At present, where other forms of agrisolar are being pursued in horticulture, viticulture, aquaculture and cropping, it is typically at a much smaller (ie. nonutility) scale.

This document focuses specifically on solar energy generation that is designed to be compatible with continued farming, whereby little or no land is taken out of production. Primary agricultural soils are those defined as having the best combination of physical and chemical characteristics for producing food, feed, forage, fiber and oilseed crops. Because of the value of these soils from a productivity standpoint, it is generally desirable to protect them from uses that would otherwise remove them from agricultural use. As is illustrated in the case studies, farming-friendly solar is possible. In the examples, several farms have married on-farm solar with rotational grazing of livestock. Another has located their solar system in a buffer area required as part of their organic certification. As planners, it is important not to simply reject the concept of solar on farms or farmland out of hand. Instead, it is needed to consider how these systems can benefit farmers and how they can be utilized in conjunction with active farming to achieve energy goals and protect the viability of agriculture in communities. All of these farmers were pleased with the arrangement they had made for the dual purposes of grazing and providing land space for solar panel arrays. Yet each one of them also mentioned a deep commitment to preserving the best agricultural land for agricultural uses first – and thus the common refrain of thinking it all through before any breaking of ground. The structures are large and change how the land is used. All encouraged the idea of using lower-impact places such as a roof or land that cannot be used for agricultural purposes, first. And secondly, the importance of a revenue source to the farm/farmer for the use of that land supporting the solar array.

This report explores the synergies between farming and solar photovoltaics with the premises that agricultural production on farmland should be maintained and farm profitability and soil health should be improved. Instead of focusing on solar siting, this report explores whether a strong case can be made from a public policy point of view for developing solar so that it helps to preserve and improve farmland and the ecosystem in which it is located, while enabling achievement of both energy system and food system goals. Three examples, using Maryland data, analyzed in the report illustrate the potential of this dual farming-plus-solar approach, with solar being on 10% or less of the farm operation: (i) solar on 100 acres leased from a 1,000 acre corn-soy commodity crop operation; (ii) solar owned by the farmer on 16 acres of a 300-acre dairy-grazing operation; (iii) solar on one-acre of a ten-acre horticultural farm. In each case profits increase substantially. Farm economic resilience is improved because solar revenues are independent of the vagaries of weather and crop markets. While the examples are Maryland-specific, the approach for analyzing dual-use solar is broadly applicable elsewhere in the United States.

This agreement template example, from the American Solar Grazing Association, Inc., is an example of a limited vegetation maintenance agreement between a solar site manager and a sheep farmer. The example includes terms of the agreement between parties and details regarding obligations under various circumstances for the duration of the contract.