Delaware River Solar (“DRS”) proposes to build multiple photovoltaic (PV) solar facilities (each a “Solar Facility”) throughout New York State under New York State’s Community Solar initiative. Each Solar Facility is planned to have a nameplate capacity of approximately 2 megawatts (MW) alternating current (AC) and be built on a 10-12 acre parcel of private land (each a “Facility Site”). This Decommissioning Plan (“Plan”) provides an overview of activities that will occur during the decommissioning phase of a Solar Facility, including; activities related to the restoration of land, the management of materials and waste, projected costs, and a decommissioning fund agreement overview. This decommissioning plan is based on current best management practices and procedures. This Plan may be subject to revision based on new standards and emergent best management practices at the time of decommissioning. Permits will be obtained as required and notification will be given to stakeholders prior to decommissioning.
Tag Archive for: Solar
As local governments develop solar regulations and landowners negotiate land leases, it is important to understand the options for decommissioning solar panel systems and restoring project sites to their original status. The New York Solar Energy Research and Development Authority (NYSERDA) provide information for local governments and landowners on the decommissioning of large-scale solar panel systems through the topics of decommissioning plans and costs and financial and non-financial mechanisms in land-lease agreements.
1,000 Sheep Will Graze Colorado Solar Farm
“Solar developer Guzman Energy achieved regulatory approval from the Delta County Board of Commissioners for a limited use permit to install and operate an 80 MW project on land in Southern Delta County, Colorado. The site that will house the array is currently irrigated and utilized for grazing, and will continue to be used in that manner, said Guzman Energy. About 1,000 sheep will remain on the site to manage vegetation and graze on native plants.” – PV Magazine
Delaware Solar Farm Grows Perennials
“There’s nothing particularly remarkable about a farm growing common decorative flowers, but the Remelts aren’t growing them in the traditional way, which would be in a greenhouse or outdoors at a nursery. Instead, they’re raising mums in a row between two banks of solar panels—making agricultural use of idle land that so many farmers who have reserved acreage for lucrative solar farms might have written off as unusable.
Parker explained how he and his father, when considering how to use the land occupied by the solar panels, settled on planting mums. They needed a crop that wouldn’t interfere with the operation of the panels, a qualification the mums met. As a bonus, the perennial flower also tends to be hardier when grown outdoors.” – Rochester City Newspaper
Sheep Grazing New Solar Farm in New York
“The solar array sits on 23 acres with a strict grass height limit. ‘The main goal here is we don’t want the grass or any vegetation growing above the panels blocking sunlight, basically a loss of power,’ said the farm’s Josh Pierce. He says it would take a lot of effort to cut and trim all that vegetation. ‘Underneath the panels— the grass also grows up there— that’s the challenge of getting a mower in.’
Their 75 sheep live at the solar farm from May until October. Their job is to graze the grass and weeds to make sure the solar panels are clear to soak in the sun. ‘A lot of this is great forage. It’s a mix of orchard grass and alfalfa, which is like candy for them,’ Josh explained.” – WCAX
The local implementation of renewable energy projects often faces opposition. The landscape transformation that comes with the transition to renewables is one of the key counter-arguments of local stakeholders. In this article, we examine the relation between research on ‘designing landscape transformations’ and ‘acceptance of renewable energy projects’; whether and how these bodies of knowledge may complement each other. The systematic literature review revealed that acceptance studies and landscape design studies describe 25 similar factors that influence acceptance. The majority of these factors are somewhat general in nature, such as economic benefits, visual impact, and aesthetics. Additionally, we found 45 unique factors in acceptance studies and sixteen unique factors in landscape design studies. Furthermore, we found differences in distribution of factors when categorizing and comparing them by means of two conceptual frameworks. Moreover, the emphasis in peer-reviewed literature differs significantly from laypersons, which is challenging the current research agenda on landscape transformation and acceptance of renewable energy. The findings and the knowledge lacunas provide clear avenues for a shared research agenda. Future research needs to examine the influence of involving landscape designers on the acceptance of renewable energy projects and the effects of more inclusive design processes on factors such as trust.
Delta County, Colorado, commissioners have given approval to the Garnet Mesa solar farm to proceed with developing a 475-acre, 80-megawatt solar farming facility that was previously rejected due to concerns about losing farmland. After developers modified their plan by added 1,000 sheep to occupy the farm, commissioners voted to grant the land-use permit, satisfied that concerns about losing farmland had been resolved due to the conversion to agrisolar.
“All negative comments were addressed by the applicant except for use of other desert lands for a solar energy facility. Those in favor of bringing a solar energy system to Delta mentioned helping the environment, additional tax revenue for the city, cheaper rates for customers and having a local energy source as reasons to support the proposal,” according to the Delta County Independent.
“Interior fencing will be added to facilitate safe containment for the sheep and to prevent overgrazing. Sheep will also be provided with watering sites and other facilities necessary for safety and well-being, according to project plans presented during an open house,” said the article.
“The two commissioners opposing the plan said they were concerned about the loss of agricultural land in the county. Guzman Energy has revised its Garnet Mesa project to ‘specifically address the agricultural and irrigation concerns raised by the community and commissioners,’ Amy Messenger, a company spokeswoman, said in an email,” according to The Colorado Sun.
Garnet Mesa is expected to produce enough power for 18,000 homes each year and to create an estimated 350 to 400 employment opportunities, including sheep and farm management.
Two new reports funded by the U.S. Department of Energy Solar Energy Technologies Office highlight the potential for successfully and synergistically combining agriculture and solar photovoltaics technologies on the same land, a practice known as agrivoltaics. One report details the five central elements that lead to agrivoltaic success, while the other addresses emerging questions for researchers related to scaling up agrivoltaic deployment, identifying barriers, and supporting improved decision-making about agrivoltaic investments. Learn more about the reports’ findings.
The first report, The 5 Cs of Agrivoltaic Success Factors in the United States: Lessons From the InSPIRE Research Study, examines the Innovative Solar Practices Integrated with Rural Economies and Ecosystems (InSPIRE) project, which was funded by the U.S. Department of Energy (DOE) Solar Energy Technologies Office (SETO) starting in 2015. Over the past seven years, the project’s multiple phases have studied the co-location of solar with crops, grazing cattle or sheep, and/or pollinator-friendly native plants, and the resulting ecological and agricultural benefits.
According to InSPIRE research, there are five central elements that lead to agrivoltaic success:
- Climate, Soil, and Environmental Conditions – The location must be appropriate for both solar generation and the desired crops or ground cover. Generally, land that is suitable for solar is suitable for agriculture, as long as the soil can sustain growth.
- Configurations, Technologies, and Designs – The choice of solar technology, the site layout, and other infrastructure can affect everything from how much light reaches the solar panels to whether a tractor, if needed, can drive under the panels.
- Crop Selection and Cultivation Methods, Seed and Vegetation Designs, and Management Approaches – Agrivoltaic projects should select crops or ground covers that will thrive in the local climate and under solar panels, and that are profitable in local markets.
- Compatibility and Flexibility – Agrivoltaics should be designed to accommodate the competing needs of solar owners, solar operators, and farmers or landowners to allow for efficient agricultural activities.
- Collaboration and Partnerships – For any project to succeed, communication and understanding between groups is crucial.
“Last year, the horticulture staff at the Arnold Arboretum of Harvard University planted a new pollinator meadow at the Arboretum’s Weld Hill Research and Administration Building.
Wild-collected seeds of native perennials were sown beneath, between, and around an array of 1,152 solar panels, envisioned as an ecological and technological experiment. As these plants come into their own this season, the Weld Hill landscape champions two of the Arboretum’s key sustainability initiatives—increasing the capture and use of renewable energy and enhancing habitat for urban pollinators and other wildlife.
As plant life has proliferated across the field, so has the traffic of visiting insects. For example, an early morning walk past the arrays showcases the dauntless industry of thousands of bumblebees gathering pollen and sipping nectar. Bumblebees tolerate cooler morning and evening temperatures than many other pollinators. They rise early, work late, and even sleep underneath flower petals at night.
Now in its second growing season, the solar meadow at Weld Hill teems with more than 30 species of native, wild-collected flowers and grasses. This number will increase through additional plantings over the coming years. The variety of species sowed in the landscape ensures ready blooms for pollinators (and curious visitors) throughout spring, summer, and fall.” – Arnold Arboretum
Michigan Agrisolar Farm Includes Cattle
“Since farms use a significant amount of energy, generating electricity directly on the farm is appealing for those seeking to reduce expenses. Also, farming-friendly solar is possible where several farms have married on-farm solar with rotational grazing of livestock. While sheep have been the predominant livestock used in solar pastures, new approaches show the possibility of harvesting the sun and providing pasture for grass-fed cattle on the same site.
Farming-friendly solar is made possible by engineering a system where the panels are raised upwards of eight feet off the ground, allowing cattle to move beneath. On hot summer days the cattle seek relief from the sun in the shade from the panels. Similarly structured to a carport, the elevated solar structure is designed to withstand rugged outdoor applications with a properly supported foundation to manage the higher wind pressure.” – Michigan Farm News
Nebraska Pork Producers Benefit from Agrisolar
“A Northeast Nebraska pork producer is using renewable energy to promote sustainable agriculture and offset energy consumption on his farm.
Jason Kvols tells Brownfield he installed 300 solar panels on the top of his hog barns two years ago and an app tracks the impact on the environment. ‘It coverts it to pounds of carbon dioxide saved through this solar system. Over the two years, it’s up to 432,000 pounds of CO2 that my system has saved in production from two years.’
He says he received a 26-percent tax credit on the project, and it has a 7- to-8-year payoff period.” – Brownfield
Kunekune Pigs Found to be Ideal for Small Farms
“Kunekune (pronounced “cooney cooney”) pigs are a good option for small farms and homesteads. The animals’ gentle nature, manageable size, and low input requirements beyond minimal rations and standard veterinary care like vaccinations and de-worming, make them a smart pick for those looking for an entry point into livestock production.” – Eco Farming Daily
You can find a free Kunekune Pig Guide here, provided by Eco Farming Daily.
The rapid expansion of solar and wind energy projects is raising questions of energy justice. Some scholars argue that solar and wind project development could burden under-resourced communities with negative impacts such as environmental harm and reduced access to resources. Conversely, other scholars argue that project development could be a boon to under-resourced communities, providing local economic and cultural benefits. Here, we analyze the drivers of solar and wind project siting patterns in the United States and explore their potential energy justice implications. We find that siting patterns are driven primarily by technoeconomic factors, especially resource quality and access to open undeveloped spaces. These technoeconomic factors channel projects into sparsely populated rural areas and, to a lesser extent, areas with lower income levels. We avoid simplifying assumptions about the broad justice implications of these siting patterns and explore our results from multiple perspectives.
AgriSolar Shown to be Ideal for Various Crops and Livestock
“Agrivoltaics, the practice of producing food in the shade of solar panels, is an innovative strategy that combines the generation of photovoltaic electricity with agricultural land use. The outcome is an optimized relationship between food production, water, and energy – the so-called Food-Energy-Water Nexus.
According to research by Prof. Greg Barron-Gafford (University of Arizona), potential crops include hog peanut, alfalfa, yam, taro, cassava, sweet potato, and lettuce. In a 2019 study, he analyzed cherry tomatoes, chiltepin peppers, and jalapeno production in combination with solar production. Cherry tomato production doubled under solar panels, while chiltepin pepper production tripled.
Sheep seem to be the best livestock for agrivoltaics. They do an excellent job of keeping vegetation down, which lowers maintenance and long-term operational costs. According to research by Cornell University, sheep grazing resulted in “2.5 times fewer labor hours than mechanical and pesticide management on-site.” – HDI
AgriSolar Adds Value to Low-Yield Crops
“A group of 35 French agricultural entrepreneurs decided to change their agricultural practices to adapt to the low quality of their groundwater and chose agrivoltaics as a way to compensate for crop yield losses.
In May, we experienced an episode of high heat and drought. Under the panels, which retained the evapotranspiration of the plants, we found that the plants were greener and better developed than between the rows. So, we think the return will be higher than what we originally estimated,” Jean-Michel Lamothe, a farmer in France’s Lands department and vice president of the French Federation of agrivoltaic producers (FFPA), told PV Magazine.
“We decided to grow plants rich in omega-3s, which respond well to our water quality problem and the climate of the region: flax, chia, camelina, rapeseed, and sunflower,’ he further explained. ‘And we will compensate for the drop in productivity with revenues from photovoltaics.’” – PV Magazine
AgriSolar Benefits Crops in Water-Stressed Regions of Brazil
“Brazil’s first agrivoltaic system is called Ecolume. It was developed by a network of more than 40 Brazilian researchers and funded by CNPq, the National Council for Scientific and Technological Development.
The Ecolume Agrivoltaic System (SAVE) makes the most of the scant local water resources by reusing water and collecting rainwater. It consists of 10 photovoltaic panels that cover 24 square meters (258 square feet), installed at a height of 2 meters (6 feet) above the ground.
In simulations carried out by Ecolume researchers, the agrivoltaic system produced up to 70% more vegetables and lowered the need for water, depending on the crop and environment. A study carried out at the University of Arizona, in the southwestern U.S. — a region that also experiences water scarcity — showed yields two to three times higher for some fruits and vegetables planted under solar panels. The SAVE water recycling and treatment systems also showed a 90% savings in water used for irrigation.” – Mongabay