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Abstract

Global energy demand is increasing as greenhouse gas driven climate change progresses, making renewable energy

sources critical to future sustainable power provision. Land-based wind and solar electricity generation technologies

are rapidly expanding, yet our understanding of their operational effects on biological carbon cycling in hosting eco-

systems is limited. Wind turbines and photovoltaic panels can significantly change local ground-level climate by a

magnitude that could affect the fundamental plant–soil processes that govern carbon dynamics. We believe that

understanding the possible effects of changes in ground-level microclimates on these phenomena is crucial to reduc-

ing uncertainty of the true renewable energy carbon cost and to maximize beneficial effects. In this Opinions article,

we examine the potential for the microclimatic effects of these land-based renewable energy sources to alter plant–soil
carbon cycling, hypothesize likely effects and identify critical knowledge gaps for future carbon research.
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Introduction

This Opinion piece is prompted by our belief that meet-

ing energy demands in a sustainable manner is one, if

not the, largest challenge we face today. World primary

energy demand is predicted to increase by 40%

between 2009 and 2035, with contributions from hydro-

power, biomass and waste, and ‘other’ renewable ener-

gies (primarily wind and solar) predicted to increase by

70%, 55% and 600% respectively (IEA, 2011). From 2010

to 2011 wind power experienced the greatest global

GW growth of any renewable technology, bringing

total capacity to 238 GW while solar photovoltaic (PV)

technology had the highest growth rate (74%) of any

renewable energy source, increasing the total capacity

to 70 GW (REN21, 2012). Concentrating solar power

growth rates were also high (38%) in the same period,

but total capacity remains relatively low: 1.8 GW

(REN21, 2012). Given the desire for low carbon (C)

energy, resource limitations, environmental disasters

associated with conventional energy sources such as

Fukushima, and the potential of renewable technolo-

gies to provide decentralized energy in remote loca-

tions, we believe there will be sustained growth of

renewable energy technologies in the future. The net

result of these changes in energy demand and sources

will be an inevitable increase in the establishment of

land-based renewables (LBR), solar and wind, energy

generation technologies. Solar and wind have the

potential to produce energy across the globe, although

cost currently restricts the viability in some areas

(Pogson et al., 2013). The power density of wind and

PV are estimated to be 3.0 � 1.7 and 4–16.5 MW km�2

respectively (Denholm & Margolis, 2008; Denholm

et al., 2009), which using the 2012 global capacities

(REN21, 2012), equates to a current land coverage, if all

were ground mounted, of 79 000 km2 and 4000–
17 500 km2 for wind and PV respectively. While wind

turbines tend to be ground-mounted, PV parks are both

building- and ground-mounted, with the relative pro-

portions differing between countries: 45% and 82% of

capacity added during 2011 in Europe and China,

respectively, were ground mounted (EPIA, 2012). Con-

sequently, hosting LBR represents a substantial global

land use change, with the potential to affect plant–soil
functions and the supporting (e.g., soil formation, nutri-

ent cycling, primary production), regulating (e.g., cli-

mate, disease), provisioning (e.g., food, water) and

cultural (e.g., recreation, aesthetics) ecosystem services

the landscape provides (Millenium Ecosystem Assess-

ment, 2005).
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While there is some understanding of the environ-

mental impacts of LBRs (Smith et al., 2011; Pearce-

Higgins et al., 2012), knowledge of the changes in

surface energy fluxes and microclimates is limited, but

growing (Baidya Roy et al., 2004; Baidya Roy &

Traiteur, 2010; Baidya Roy, 2011; Millstein & Menon,

2011; Zhou et al., 2012; Adams & Keith, 2013). We argue

this knowledge is too incomplete given the rate and

potential for LBR deployment. Moreover, there is a con-

siderable knowledge gap on the effects of LBR-altered

microclimates on plant and soil processes. Plant–soil
interactions govern soil C cycling and storage (Ostle

et al., 2009a), that underpin critical ecosystem services

such as food and timber production, water purification,

climate mitigation and nutrient retention (Lal, 2004).

Considering the likelihood that land use change for

LBR will continue to increase, it is important to ensure

that we have scientific understanding of the full

impacts on the terrestrial C cycle, greenhouse gas

(GHG) emissions and C sequestration. Continuing LBR

deployment at the current rate without understanding

of ground-level microclimatic effects and the conse-

quent C benefits, or costs, is unwise as we need to

ensure any trade-off in the delivery of other ecosystem

services is fully considered during planning. Moreover,

reducing the embedded C costs in LBR energy produc-

tion, which could be achieved through increasing soil C

sequestration, is one of the key challenges in decarbon-

izing energy and the future deployment of LBR (Pog-

son et al., 2013): if the effects on C sequestration are

positive, the understanding could accelerate our path

to sustainable energy provision.

In this Opinions article, we summarize current

understanding of LBR-induced changes on microcli-

mates and hypothesize the, as yet unquantified,

impacts on plant–soil carbon cycling. We identify and

discuss critical knowledge gaps for future carbon

research in response to this growing and globally

important land use change.

LBR effects on microclimate

The operation of wind turbines can affect surface mete-

orology by changing atmospheric boundary layer con-

ditions, namely wind speed, turbulence and mixing,

and thus the vertical distribution of energy (heat) and

exchange between the land surface and atmosphere

(Fig. 1). The installation of ground-mounted PV arrays

has the potential to affect surface albedo, cause shading

and intercept precipitation and atmospheric deposition,

as well as influencing wind speed and turbulence at the

land surface (Fig. 1). Local, regional and global effects

of wind farms and, to a lesser extent, solar parks on the

climate have been postulated (Baidya Roy et al., 2004;

Keith et al., 2004; Millstein & Menon, 2011), with local

effects on temperatures within and nearby to wind

farms observed (Baidya Roy & Traiteur, 2010; Zhou

et al., 2012). Changes in wind speed, turbulence and

mixing as a result of LBR, may affect humidity (Baidya

Roy et al., 2004) and potentially biogenic gas [CO2,

methane (CH4) and nitrous oxide (N2O)] concentration

profiles in the near-surface boundary layer. In addition,

large-scale modelling predicts that rainfall could be

enhanced by wind farms due to reduced movement of

drier air (Fiedler & Bukovsky, 2011), and the LBR-

induced changes in temperature and surface heat fluxes

could result in a global redistribution of cloud cover

and precipitation patterns (Wang & Prinn, 2010). We

judge that together all of these phenomena have the

potential to interact, causing changes in ground-level

microclimatic conditions strong enough to significantly

alter plant–soil carbon cycling, with implications for

ecosystem and landscape scale GHG emissions and soil

C stocks.

Microclimate effects on plant–soil carbon cycling

Renewable energy generation technologies are being

deployed across landscapes with distinct plant–soil
communities and C stocks, ranging from C-poor envi-

ronments (e.g. the Gobi Desert) to C-rich environments

(e.g. blanket peatlands of Scotland), in heavily man-

aged (e.g. agricultural land) and relatively unmanaged

systems (e.g. deserts). Soil is recognized as the largest

single store of terrestrial organic C, containing more C

than vegetation and the atmosphere combined (Swift,

2001). Biological plant–soil processes, that interact with

biotic and abiotic environmental factors, regulate

much of the terrestrial C cycle and thus govern soil C

storage, release of greenhouse gas emissions CO2, CH4

and N2O and productivity (Bardgett et al., 2008). Cli-

mate is a proven powerful determinant of plant–soil
processes (Freeman et al., 2004; Davidson & Janssens,

2006; Dorrepaal et al., 2009; Mercado et al., 2009; Alli-

son et al., 2010). Consequently, we argue the effects of

wind farms and solar parks on the local climate may,

therefore, alter the C cycle directly through changes in

temperature (air and soil), precipitation and evapo-

transpiration (and hence soil moisture) and the bal-

ance of direct and diffuse radiation (Fig. 2), all of

which are proven to influence terrestrial C cycling

(Knapp et al., 2002; Ma et al., 2007; Dorrepaal et al.,

2009; Mercado et al., 2009; Joos et al., 2010). However,

it is not only the direct effects of the LBR-induced

microclimatic change that may alter C cycling, but

indirect effects as a result of climate-induced changes

in plant and soil microbial community composition

and activity (Fig. 2).
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In the following sections we summarize the potential

effects of microclimatic change caused by LBR on key

processes in the terrestrial C cycle and hypothesize the

likely implications on productivity, soil C and GHG

emissions. We first discuss direct effects, changes in

temperature, soil moisture and radiation, on plant–soil
C cycling. Then, we discuss indirect effects mediated

through changes in plant and microbial communities

and describe some of the likely interactive effects.

Direct effects on plant–soil carbon cycling

Temperature

Temperature is one of the key drivers of biosphere C

cycling, with changes in temperature generally posi-

tively related to primary productivity and organic mat-

ter decomposition rates, soil DOC concentrations and

the uptake and release of CO2 and CH4 (Clark et al.,

2009; Dorrepaal et al., 2009). However, the direction

and magnitude of C response depend on the ecosystem

and climatic region (Wise et al., 2004; Peng et al., 2009).

In addition to instantaneous direct effects on plant pro-

ductivity and decomposition rates, temperature

changes caused by LBR may also influence growing

season length and consequently ecosystem C cycling

through increasing productivity and potentially feed-

backs to decomposition given the increased litter inputs

and rhizodeposition (Menzel & Fabian, 1999).

The magnitude of measured temperature change

caused by wind farms (0.7–3.5 °C (Baidya Roy & Trai-

teur, 2010; Zhou et al., 2012)), and the magnitude of

measured warming by solar parks in the built environ-

ment (2.5–26.0 °C (Scherba et al., 2011); there are no

studies of ground-mounted solar parks), are of the

order likely to have significant effects on plant produc-

tivity and C cycling in various ecosystems. For exam-

ple, an approximately 1 °C increase in temperature

accelerated respiration by 60% in spring and 52% in

summer in a subarctic peatland (Dorrepaal et al., 2009).

Therefore, we are confident that LBR deployment

could change productivity and decomposition, but the

(a) (b)

Fig. 1 (a) Schematic of the potential effects of wind turbines on air flow, temperature and evapotranspiration during the day with a sta-

ble atmospheric boundary layer and at night with an unstable atmospheric boundary layer. The pink (lighter grey) background repre-

sents warmer air and blue (darker grey) cooler air. Pink dashed arrows indicate warmer air eddies, which downwind of the turbine are

mixed into the cooler air, thus increasing night-time surface temperature. Conversely, the blue solid arrows symbolize cooler air eddies

which cause a cooling at the surface during the day-time. The horizontal arrows symbolize the wind speed up and downwind of the

turbines, with a reduction in wind speed during the day and night. The vertical arrows suggest hypothesized changes in evapotranspi-

ration, with increases under stable conditions and decreases under unstable conditions downwind of the turbine. (b) Schematic of the

potential effects of solar panels on precipitation distribution; incoming shortwave (SI), reflected shortwave (SR) and diffuse shortwave

(SD) radiation (solid red arrows); incoming (LI) and emitted (LE) longwave radiation (dashed black arrows) and conductance (C). The

amount of SR will be lower for the photovoltaic (PV) panels, compared with the ground surface, given their lower albedo. The ratio of

SD to SI will be greater under the PV as while SD will be reduced nearly all SI will be intercepted by the PV panel. The area under the

PV panel is hypothesized to be warmer as a result of LE from the panel, leading to greater conductance into the soil (however, this will

be dependent on the effects of the PV panels on wind). Finally, the PV panel will intercept precipitation, concentrating the inputs at the

lower edge of the PV panel.
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direction of temperature change is uncertain, that is

both increases and decreases in day-time temperature,

and increases in night-time temperature have been

observed at wind farms (Baidya Roy & Traiteur, 2010;

Zhou et al., 2012). Increases in day- and night-time tem-

peratures are hypothesized to occur under solar panels

in the desert, but day-time decreases could occur if

photovoltaic panel technology becomes more efficient

(more energy converted into electricity and less emitted

as heat) (Millstein & Menon, 2011). Moreover, we pos-

tulate that if PV parks are deployed in environments

with a lower albedo than deserts, for example grass-

lands or areas of bare soil, cooling may occur. The rela-

tive sensitivity of decomposition and productivity to

changes in temperature is debated (Davidson &

Janssens, 2006), and therefore we cannot deduce the

effect of temperature changes caused by LBR on the C

balance of the hosting landscapes with certainty. How-

ever, we hypothesize that wind farm-induced increases

in night-time temperatures and day-time cooling will

accelerate soil decomposition and reduce photosynthe-

sis respectively. Also, we hypothesize that if tempera-

tures increase as a consequence of solar park presence,

there will be enhanced soil carbon cycling and GHG

emissions. However, the magnitude and direction of

ecosystem C response will largely depend on the

degree to which the ecosystem is temperature-limited

and on the relative importance of other limiting factors

including nutrients and soil moisture.

Soil moisture

Soil moisture, or in wetland soils water table depth, is a

dominant abiotic control over productivity and decom-

position. While generally productivity and decomposi-

tion to CO2 will increase with soil moisture there is an

upper threshold above which rates decrease, reflecting

the response of different plant species to varying soil

moistures and the inhibition of decomposition under

anaerobic conditions (Sulman et al., 2010; Lee et al.,

2012).

Changes in soil moisture directly affected by LBR are

governed by perturbations to both precipitation and

evapotranspiration rates. Large-scale wind farms are

postulated to affect the distribution of rainfall (Wang &

Prinn, 2010) but local effects are not hypothesized. No

explicit large-scale effects of solar parks on precipita-

tion are hypothesized, although may occur as solar

parks could affect regional temperatures and wind pat-

terns (Millstein & Menon, 2011). However, solar parks

will affect the local distribution of precipitation: the

areas under the footprint of the panels will receive less,

and areas at the edges of the panel will receive more

through drainage from the panels (Fig. 1).

The postulated effect of wind turbines on evapotrans-

piration is small, with an increase in >0.2 mm h�1 dur-

ing stable conditions (Baidya Roy et al., 2004), however,

as yet there are no published field data supporting this

hypothesis. The impact of solar parks on evapotranspi-

ration is less clear and we purport that it will depend

on the park design, with potential for increased or

decreased rates contingent on whether the surface

Fig. 2 Direct (dashed arrows) and indirect (dotted arrows)

effects of LBR-induced changes in microclimate on terrestrial C

cycling and feedbacks to global change (solid arrows). Direct

effects include the influence of temperature, soil moisture and

radiation on plant community composition and productivity,

and on soil microbial activity. Indirect effects result from

changes in the soil microbial community caused by alteration of

soil physico-chemical conditions and C inputs to the soil, medi-

ated through changes in plant community composition and pro-

ductivity.
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roughness, and therefore turbulent exchange, is

increased or decreased respectively. Therefore, changes

in evapotranspiration and precipitation will potentially

cause changes in the soil moisture content of soils host-

ing LBR, but given the limited understanding and pau-

city of field evidence we cannot conclude the likely

direction or magnitude of change. Given the effect of

the change in precipitation distribution under and

around solar panels, we predict spatially variable soil C

concentrations will be promoted. However, we hypoth-

esize that in most LBR hosting ecosystems the effect of

soil moisture on plant–soil carbon cycling at the site

scale will be relatively minimal given that it is the dis-

tribution, not amount, of inputs that will change and

preliminary results on evaporation predict small

changes.

Radiation

Solar radiation, and specifically photosynthetically

active radiation (PAR), determines the amount of

energy available for photosynthesis (Wu et al., 2010).

Research indicates that diffuse radiation (i.e. scattered)

results in enhanced photosynthetic rates (Gu et al.,

2003) and enhanced soil C sequestration (Mercado

et al., 2009) compared with direct radiation. The effects

of LBR on radiation are, as yet, unknown. We hypothe-

size that wind farms will have a relatively limited effect

on the receipt of PAR, and therefore photosynthesis:

there is only short-lived shading from the blades, shad-

ing from the turbine tower and a slight increase in the

ratio of diffuse to direct radiation due to reflectance of

shortwave radiation from the wind turbine. In contrast,

we hypothesize solar parks will have substantial effects

on the amount of PAR received through interception of

a large proportion of the incoming direct and diffuse

radiation and that the ratio of diffuse to direct radiation

will increase (Fig. 1). We predict the reduction in PAR

under the solar panels may cause reductions in photo-

synthesis and thus productivity. However, in some

areas where direct PAR is very high, for example North

Africa, photoinhibition and photodamage can occur

(Murata et al., 2007) making reductions in PAR benefi-

cial to photosynthesis. Consequently, we hypothesize

soil C sequestration may increase or decrease, with

decreases more likely in regions where low radiation

conditions prevail and increases more likely in areas

subjected to higher radiation levels.

Indirect effects on soil carbon cycling

The principal indirect effects of changes in microcli-

mate on plant–soil carbon cycling are a product of

longer term changes in plant and soil microbial

community composition and shorter term changes in

plant carbon inputs. Given the measured and antici-

pated changes in microclimate we expect, in the longer

term, over the 20–25 year lifespan typical of a LBR

installation, changes in the vegetation community com-

position will occur (Euskirchen et al., 2009). Given the

variability in C cycling between different plant func-

tional types, GHG fluxes and ultimately C sequestra-

tion may be altered (De Deyn et al., 2008). Indeed, the

importance of plant functional type on C cycling has

been demonstrated to be greater than climatic effects:

litter decomposition rates in one climatic zone were

found to vary 18.4-fold, whereas decomposition of the

same litter in different climatic zones varied 5.5-fold

(Parton et al., 2007; Cornwell et al., 2008). Change in

plant community composition may also lead to other

ecological feedbacks that will affect environmental con-

ditions and subsequently soil C cycling. For example,

different albedos (Chapin et al., 2005) and transpiration

rates (Chapin, 2003) are associated with different plant

functional types and may affect soil moisture which is a

strong C cycle control. Therefore, we advocate consid-

eration of likely changes in vegetation composition in

response to the deployment of LBR on terrestrial C

cycling.

In the shorter term, we expect direct effects of LBR-

induced microclimates on plant productivity may indi-

rectly affect decomposition rates through changes in

the quantity and quality of C entering the soil as litter

and rhizodeposits (Bardgett et al., 2008) (Fig. 2). Addi-

tional litter inputs may increase soil C, but can also

stimulate increases in soil organic C mineralization and

respiration if soil microbes are C limited (Fontaine

et al., 2004). Litter quality from the same species may

change appreciably as a result of changing environmen-

tal conditions (Sardans et al., 2012), with the quality of

litter inputs and rhizodeposits, as determined by plant

community composition and abiotic conditions, con-

trolling their decomposability with feedbacks on pro-

ductivity (Norby et al., 2010).

We believe that the research community should also

consider the effects of LBR on soil microbial communi-

ties. Microbes are a key component of the terrestrial C

cycle as they uptake atmospheric CO2 and CH4 and

control the release of these gases through respiration

and methanogenesis (Singh et al., 2010). Different rates

of GHG uptake and release are associated with differ-

ent microbial groups (Balser & Wixon, 2009), and soil

microbial community composition is known to be

affected by plant community composition, and abiotic

factors (Bardgett et al., 2008) Consequently, LBR may

affect microbial-mediated GHG emissions and uptake

in the short term due to abiotic effects, and in the long

term through plant community composition change.

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 1699–1706
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Furthermore, changes in microbial communities may

feedback and promote further change in plant commu-

nity composition (Bardgett et al., 2008).

As a result of microclimatic-induced changes in res-

piration and photosynthesis rates, plant and soil com-

munities may affect near-surface CO2 concentrations,

that feedback and alter plant–soil C cycling rates.

LBRs may also affect CO2 concentrations directly,

through altering mixing and turbulent exchange of

near-surface air with the bulk air mass, but we postu-

late plant–soil effects will dominate. The effect of

wind turbines on CO2 concentrations has been mea-

sured in croplands in central Iowa. Preliminary results

indicate higher CO2 uptake during the day, more res-

piration at night but on balance an increase in CO2

uptake (see http://www.meteor.iastate.edu/windre-

search/researchpapers.html for presentations). Atmo-

spheric CO2 concentrations affect plant productivity

and decomposition processes, with higher CO2 con-

centrations commonly stimulating higher rates (King

et al., 2004; Ainsworth & Long, 2005). The balance of

assimilation and respiration in response to changes in

CO2 concentration, and thus the effect on soil C, is

variable between studies, but generally elevated CO2

increases soil C (Hungate et al., 2009).

Thus, there is strong evidence that the combined

changes in plant C inputs, plant and microbial commu-

nity composition and photosynthetic and respiration

rates, will act to influence C cycling with feedbacks to

GHG emissions. We do not postulate a direction of

change as the exact nature of these effects will depend

on the ecosystem type (i.e. grasslands, peatlands,

deserts, urban environments, rangelands) and local cli-

mate, as well as the type and intensity of management

(e.g. grazing, cropping, forestry).

Interactive effects

There is extensive potential for interactive effects

between the direct and indirect drivers of the C cycle

outlined above, and these may amplify or dampen C

cycling processes (Ostle et al., 2009b). Interactions stud-

ied under climate change scenarios, and we argue oth-

ers that are specific to LBR-induced ground-level

microclimates, are likely to contribute to the regulation

of plant–soil C cycling and GHG emissions in land-

scapes hosting LBR. Many of the common interactions

in climate change scenarios have been studied, though

less so in relation to effects on microbial communities

and CH4 fluxes (Singh et al., 2010).

Numerous studies have examined the interaction of

temperature and soil moisture, two of the dominant

variables governing productivity and decomposition.

For example, warmer and drier conditions have been

associated with increased respiration relative to pro-

duction across a range of biomes (Anderson-Teixeira

et al., 2011). Also, the nutrient (e.g., C, N and phospho-

rous) status of the soil, differences in plant inputs and

changes in plant community composition are likely to

interact with abiotic drivers to influence C cycling pro-

cesses. For example, soil C sequestration under ele-

vated CO2 is constrained by available N and the

nutrients required to support N2 fixation (Van Groeni-

gen et al., 2006). There is evidence that climate change

during the summer months promotes differences in

productivity of vascular and nonvascular species

(Dorrepaal, 2007), that trees are more responsive than

herbaceous species to increases in CO2 concentrations

(Ainsworth & Long, 2005) and that elevated CO2 pro-

vides C3 plants a competitive advantage over C4 plants

(Reich et al., 2001). There is also evidence that different

species, not just different plant functional types,

respond uniquely to the same environmental condi-

tions (Dorrepaal, 2007). However, over the lifetime of

LBR installations the microclimatic effects on C seques-

tration may not be as great as hypothesized due to

plant acclimation – the change in the biochemical and

physiological responses of a plant to environmental

change (Luo et al., 2001). In addition, there could be lar-

ger scale feedbacks on the carbon cycle. For example,

warming caused by LBR may increase respiration and

thus CO2 release, causing a positive feedback and fur-

ther warming at the global scale. However, this would

depend on the scale of LBR deployment globally. These

interactions and feedbacks are complex and depend on

parameters that are highly variable in time and space;

we believe these warrant much scrutiny in further

research.

Future research and conclusions

The speed and scale of land use change associated

with the expansion of renewable energy technologies

is unprecedented. In our opinion, the challenge for

future research is to ensure greater security of energy

supply while protecting and potentially enhancing

host system terrestrial carbon stocks, productivity and

biodiversity. Consequently, we believe that a better

scientific understanding of the effects of LBR-induced

microclimatic changes on ecosystem carbon cycling

and greenhouse gas emissions is critical to allow us to

predict and manage impacts and trade-offs across a

wide range of hosting landscapes globally. Clearly, the

effects of LBR on C cycling rates and plant and soil

stocks will be less in ecosystems which, under their

current land use, exhibit low rates and stocks, such as

deserts and rocky landscapes (we do not advocate

or oppose deployment in these environments). The

© 2013 John Wiley & Sons Ltd, Global Change Biology, 20, 1699–1706
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potential to increase C benefits from ground-level

changes in microclimate needs to be examined, and

placed in the broader context of the full C costs of elec-

tricity produced by LBRs; we argue that there is much

scope to maximize beneficial effects.

To determine the long-term operational impacts of

LBR on plant and soil C, and allow generalization and

prediction of effects across the globe, we strongly advo-

cate the investigation of LBR-induced microclimatic

effects under different atmospheric conditions, across a

range of ecosystems occurring in different climatic

zones. Furthermore, understanding and modelling

needs to be developed to account for the range of wind

farm and solar park designs and consequently designs

optimized for energy production and plant–soil C

cycling. Therefore, we call for an increase in research

effort in this emerging field and propose specific

research priorities should be (i) field assessment of the

effects of LBR on the local climate, especially solar parks

for which there is no evidence, with potential for remote

sensing to provide data at a larger scale; (ii) field experi-

ments in carbon relevant hosting ecosystems to examine

the effects of LBR-induced microclimates on plant–soil
C cycling in situ; (iii) controlled environment studies

examining the interactive effects of diurnal, seasonal

and annual microclimatic controls on plant–soil C

cycling; and (iv) modelling that uses mechanistic under-

standing from field and laboratory studies to upscale,

and forecast effects of LBR-induced microclimates on C

cycling and greenhouse gas emissions across the globe.

Given the dominance of temperature on plant–soil C

cycling, it is crucial that new experiments and models

examine LBR effects on this parameter. However, the

effects of other abiotic and biotic factors that are

affected by LBR, and their interactions, also need to be

resolved, across the full range of hosting systems.

Land use change for LBR is global, widespread and

predicted to increase. Understanding of microclimatic

effects is growing, but currently incomplete, and subse-

quent effects on plant–soil C cycling, GHG emissions

and soil C stocks are unknown. We urge the scientific

community to embrace this research area and work

across disciplines, including plant–soil ecology, terres-
trial biogeochemistry and atmospheric science, to ensure

we are on the path to truly sustainable energy provision.
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