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Abstract 7 

 Agrivoltaics co-locate crops with solar photovoltaics (PV) to provide sustainability 8 

benefits across land, energy and water systems. Policies supporting a switch from irrigated 9 

farming to rainfed, grid-connected agrivoltaics in regions experiencing groundwater stress can 10 

mitigate both groundwater depletion and CO2 from electricity generation. Here, hydrology, crop, 11 

PV and financial models are integrated to assess the economic potential for rainfed agrivoltaics 12 

in groundwater stressed regions. The analysis reveals 11.2-37.6 PWh/yr of power generation 13 

potential, equivalent to 40-135% of the global electricity supply in 2018. Almost 90% of 14 

groundwater depletion in 2010 (~150 km3) occurred where the levelized cost for grid-connected 15 

rainfed agrivoltaic generation are 50-100 USD/MWh. Potential revenue losses following the 16 

switch from irrigated to rainfed crops represents 0-34% of the levelized generation cost. Future 17 

cost-benefit analysis must value the avoided groundwater stress from the perspective of long-18 

term freshwater availability.  19 

 20 
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Introduction 1 

 Solar photovoltaics (PV) are mature low-carbon energy solutions with enough resource 2 

and technological potential to fully support global energy demand1. Recent analysis of pathways 3 

to achieve the Paris climate goal estimates that 0.24-1.55 trillion USD/yr of investment into similar 4 

renewable energies is needed to decarbonize electricity by 20502. PV costs are competitive with 5 

fossil fuel generation3, and system operators are increasingly experienced with high penetrations 6 

of solar energy4. How to prioritize project development and siting to maximize societal benefits 7 

remains an open research question. 8 

 Groundwater stress is concurrent to the climate change challenge, and impacting an 9 

estimated 2 billion people5. Policies designed to conserve groundwater may restrict irrigation, 10 

reducing crop yields or shifting crops elsewhere6. These pressures could reduce agricultural jobs 11 

with detrimental impacts to local communities if the training to pursue alternative livelihoods 12 

locally is not supported7. Conversely, maintaining irrigation deliveries under groundwater 13 

conservation could lead to expansion of wastewater recycling and desalination, with the energy 14 

footprint making it more difficult and costly to reduce CO2 emissions8.  15 

 Integrated policies developed from a systems perspective leverage resource synergies that 16 

achieve benefits for multiple goals9. An integrated approach can reduce the costs of policy 17 

implementation when compared to situations where each policy is pursued on its own10. 18 

Livelihood shifting is an unexplored policy integration lever for groundwater and renewable 19 

energy transformations that could balance job impacts across the economy, enabling workers 20 

from impacted sectors to secure the income they need for a decent living.   21 

 In this context, agrivoltaics represent an attractive solution for reducing water use and 22 

energy-related CO2 emissions by co-locating rainfed crops with utility-scale PV generation11,12. 23 

Farmers offset investment costs and diversify their income stream through zero-interest loans 24 

combined with power purchasing agreements from the utility. Field research demonstrates co-25 

location of PV has limited impact on yields for many high value crop varieties13,14, and previous 26 

analysis indicates there are favorable operational conditions and massive resource potential on 27 

croplands globally12. Yet, there are no previous analyses quantifying the potential for rainfed 28 

agrivoltaics to contribute to the groundwater and climate policy agendas at global-scales.  29 

 In this paper, we fill this knowledge gap by addressing the following research question: 30 

what are the potential economic costs of switching from irrigated farming to rainfed agrivoltaics 31 

in groundwater stressed regions when accounting for the geospatial distribution of solar 32 

resources, existing infrastructure and crop yield impacts? The theory of change in the analysis is 33 

that future investments into solar energy under the Paris Agreement can be translated into 34 

financing for utility-scale PV generation that is owned and operated by farmers in groundwater 35 

stressed regions. PV investments configured in this way would bring both reductions in CO2 from 36 

fossil power generation and unsustainable groundwater extractions from irrigation. For example, 37 
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the Clean Development Mechanism (CDM) is an international CO2 trading framework where 1 

high-income countries invest in low-cost renewable energy projects in developing regions and 2 

account for the emission reductions within their own national emissions inventory15. Similar 3 

financing if reframed from an integrated water-energy-land perspective could enable farmers to 4 

switch from unsustainable groundwater irrigation to harvesting rainfed crops and solar energy 5 

in support of food, climate and groundwater sustainability goals.   6 

Materials & Methods 7 

 The steps in the geospatial analysis are depicted in Figure 1. Groundwater stressed areas 8 

are identified using outputs from the global hydrological model PCR-GLOBWB16. This 9 

framework is modeling the water balance in half degree grid-cells that include vertically stacked 10 

layers representative of the land surface and soil column at a daily time-scale. Multi-sector human 11 

water withdrawals and return flows interact with the soil moisture calculations to estimate 12 

groundwater stress. We assume grid cells are groundwater stressed where non-renewable 13 

groundwater extraction is used in the model to fulfill the water demands and depletion occurs17. 14 

The analysis considers the complete switching of groundwater stressed irrigated area to rainfed 15 

area (i.e., no irrigation). Irrigated area within each groundwater stressed grid cell is delineated by 16 

intersecting it with a global map of irrigated areas18.  17 

 For benchmarking the results, the analysis compares PV with wind power technology. 18 

Twenty-five (25) years of sequential hourly PV and wind power production data are generated 19 

at each groundwater stressed location using calibrated resource potential and power plant 20 

performance models19,20. The resource data are based on the MERRA-2 re-analysis of satellite 21 

measurements and calibration to performance data in Europe. The data has known over-biases 22 

in Europe (~10% on average), with additional uncertainties expected outside of Europe. These 23 

over-biases suggest that estimates in this paper could be overly optimistic. The power plant 24 

simulations consider generic utility-scale systems of 1 MW capacity.  Siting density assumptions 25 

(i.e., the intensity of land use per unit of installed capacity) translate the performance simulations 26 

into gross power generation and land use at each location.  27 

 The production time-series are combined with average technology investment and 28 

operational costs to estimate the total levelized costs of agrivoltaic energy (LCOE) at each 29 

groundwater stressed location. The LCOE represents the unit cost of electricity generated and is 30 

calculated with the following equation29: 31 

𝐿𝐶𝑂𝐸 =
𝐶𝐴𝑃𝐸𝑋 + ∑ 𝑂𝑃𝐸𝑋𝑡 ∙ (1 + 𝑊𝐴𝐶𝑁)−𝑡  𝑁

𝑡=1

∑ 𝐸𝐿𝐸𝐶𝑡 ∙ (1 + 𝑊𝐴𝐶𝑅)−𝑡𝑁
𝑡=1

 
(1) 

where CAPEX and OPEX are the capital and operational expenditures respectively, WACR is the 32 

real weighted average cost of capital (with inflation) and WACN is the nominal value (without 33 

inflation), and ELEC is the electricity supplied by the project in a given year t and over its lifetime 34 

N. Electricity supply is quantified from the hourly power plant simulations. Depreciation rates 35 
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are used to scale power generation yields in future years29,30. Grid-connection costs are included 1 

in the CAPEX and calculated using either OpenStreetMap22 or the urban areas from Global 2 

Human Settlement Layer (GHSL) for 201921. The datasets are compared to find the minimum 3 

distance to each groundwater stressed location. Grid extension costs are expressed per unit 4 

capacity and distance to provide a site-specific investment multiplier for the CAPEX input to the 5 

LCOE calculation. Groundwater stressed locations with grid expansion distances greater than 6 

200 km are excluded from the analysis due to high investment costs. Country risk premiums are 7 

used to estimate weighted average cost of capital for discounting future cash flows and assuming 8 

a risk-free premium of 3.1% 26,29,31. Economies-of-scale are not included in the calculations. 9 

 10 
Figure 1: Spatially-explicit approach for calculating agrivoltaic economic potential in groundwater stressed regions. 11 
Groundwater stressed locations are estimated following the analysis of groundwater depletion in Wada et al. (2014)16. 12 
Datasets input to each calculation step are indicated with the most recent year reported in the dataset. Data sources 13 
are: Renewables.Ninja19,20; Global Human Settlement Layer (GHSL)21, OpenStreetMap22, Global Map of Irrigated Areas 14 
(GMIA)18, Global Agro-ecological Zones (GAEZ)23; Institute for Global Environment Strategies (IGES)24; Carbon 15 
Footprint25; International Renewable Energy Agency (IRENA)3; A. Damodaran26; and United Nations’ Food and 16 
Agriculture Organization (FAO)27. Polygons from the Global Administrative Areas Database (GADM) are used to 17 
categorize the groundwater stressed points by country28. An open-source online repository stores the R programming 18 
script performing the geospatial analysis steps (https:/github.com/scparkinson/gw_renewables). 19 

 Uncertainties are reflected using a range of cost and performance assumptions (Table 1). 20 

For example, PV panel shading helps protect crops prone to heat stress, leading to a net increase 21 

in crop yields13,32. Conversely, for other crops, yields vary proportionately with shading level33,34. 22 

Panel density in turn impacts power generation potential. Half-spacing typical in agrivoltaic 23 

operations reduces the power density per unit area compared with a conventional PV plant.  24 
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Parameter Unit Range Source(s) 

1 MW Solar PV    

 Investment USD/kW 1210 (796, 2745) 3 

 Operations & Maintenance USD/kW-yr 15 (11, 24) 35 

 Panel density1 MW/km2 15 (10, 30) 36 

 Depreciation2 % / year 0.5 (0.2, 0.9) 29 

 Lifetime Years 25 (20, 30) 35 

1 MW Wind Turbine    

 Investment USD/kW 1499 (1174, 2439) 3 

 Operations & Maintenance USD/kW-yr 48 (11, 150) 35 

 Turbine density MW/km2 5 (2.5, 6) 37 

 Depreciation2  % / year 1.6 (0.5, 1.8) 30 

 Lifetime Years 25 (20, 30) 35 

Grid Connection3    

 Investment USD/kW·km 3.7 (1.1, 5.3) 38,39 

Crop Yield Change4    

 Wheat %  -13 (-27, 0) 11 

 Rice % -38 (-67, -19) 34 

 Pulses % -13 (-27, 0) Assumed  

 Maize % -12 (-20, 0) 33,34 

 Fodder % -12 (-20, 0) Assumed 

 Sugarcane % -38 (-67, -19) Assumed 

 Fruit % 0 (-20, +40) 13,32 

 Vegetables % 0 (-20, +20) 13,14 

 Cotton % 0 (-20, +40) 32 
1Average is half panel density on unoccupied land. 1 
2Power production yield depreciation due to device degradation. 2 
3Operational costs for grid extensions excluded due to lack of data. 3 
4Change in yields from crop shading (included for solar PV). 4 
Table 1: Cost and performance assumptions for the analysis.  5 

 Following the approach described by Gernaat et al. (2017)40, the LCOE incorporates the 6 

cost of agricultural land loss caused by switching from irrigated to rainfed operations. The 7 

difference in land value (irrigated minus rainfed) is added to OPEX in equation (1). The crop-type 8 

that maximizes land value is selected for the difference calculation. A land value map with 5 arc 9 

minute spatial resolution is generated based on the potential agricultural yields calculated with 10 

the Global Agro-Ecological Zones (GAEZ) model23. The analysis considers eight crop-types: 11 

wheat, rice, maize, pulses, cotton, sugarcane, fruit and vegetables. Historical national crop price 12 

ranges over the past 5 years are obtained from  FAOSTAT27, and mapped to the crop-types 13 

considered for GAEZ. Crop prices are held constant in future years, and averages are used where 14 

data is missing. 15 

 The CO2 emissions impact of PV development at each water stressed location is further 16 

estimated using the United Nations’ ACM0002 baseline methodology for CDM projects15. The 17 

avoided CO2 emissions from the displaced grid generation are initially quantified by multiplying 18 

the average annual agrivoltaic generation by the corresponding national grid CO2 emission 19 

factor24,25. The CO2 price required to pay for the agrivoltaic CAPEX and OPEX is then estimated 20 

by dividing the discounted lifecycle system costs by the avoided CO2. It is important to emphasize 21 

the simplifications, including the exclusion of future cost reductions projected for solar PV 22 

technology29, revenue from electricity pricing, and the impacts from power system flexibility and 23 

dispatch strategy. For example, solar PV might be used preferentially to offset the most carbon-24 

intensive generating units in a utilities’ fleet, making the average grid emission factors utilized 25 

overly pessimistic. Additional energy storage technologies and approaches may also be needed 26 

in some locations to aid in grid-integration, particularly at high PV penetrations4.  27 
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Results and Discussion 1 

 Results of the global analysis are summarized as economic supply curves for electricity 2 

generation potential, avoided CO2 and groundwater depletion (Figure 2). Globally, 11.2-37.6 3 

PWh/yr of agrivoltaic generation potential is found to exist on groundwater stressed irrigated 4 

area, equivalent to 40-135 % of global electricity generation in 2018. An estimated 150 km3 of 5 

groundwater depletion would be displaced from the switch to rainfed operations (~90% of the 6 

global total in 2010). The average levelized costs for agrivoltaic systems, accounting for power 7 

production and crop yield impacts, are 50-100 USD/MWh (Figure 2a). The equivalent avoided 8 

grid CO2 costs are 75-200 USD/tCO2 (Figure 2b). These results compare well with recent pilot 9 

project analysis in Germany41.  10 

 Solar PV potential exceeds wind potential in most locations, with global wind potential in 11 

groundwater stressed regions ranging from between 2.7-8.4 PWh per year (Figure 2a). Under 12 

half-spacing typical in agrivoltaic operations14,42, PV continues to provide more power density 13 

per unit area than wind turbines. The extreme performance scenarios show that wind and solar 14 

PV potential are similar if the cost and density assumptions for PV are less optimistic. The analysis 15 

identifies more than 1.3 PWh of wind  power potential that is less expensive than solar PV under 16 

average performance assumptions in Table 1. Additional uncertainties exist due to e.g., the use 17 

of reanalysis data, future prices and system integration barriers.  18 

 19 

Figure 2: Global economic supply curves for agrivoltaic systems in groundwater stressed regions and comparison to 20 
equivalent wind operations. a. cumulative renewable electricity generating potential across the distribution of levelized 21 
costs; and b. cumulative groundwater depletion across the distribution of avoided grid CO2 costs. The uncertainty 22 
range is obtained from calculating the potentials under the worst/best combinations of the parameters in Table 1.  23 

 Co-location of PV and the switch to rainfed operations impacts crop yield potential.  The 24 

quantified economic impact of the reduced crop yield represented on average 6 % of the LCOE 25 

(ranging from 0-34 %). Crop shifting to varieties benefitting from panel shading did not lead to 26 
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net increases in crop revenue. Crop-types maximizing yield revenues can differ for irrigated and 1 

rainfed operations. This leads to a presumptive switch in crop-type under agrivoltaic 2 

transformation. Switching leads to an unintuitive gain in the yield potential for the rainfed crop-3 

type that is offset by the reduction in yield potential for the irrigated crop-type present prior to 4 

switching. At a country-level, largest impacts of PV co-location on the revenue generation 5 

potential of farmers occurs for vegetable crops (Table 2). The result is driven by the high prices 6 

offered for vegetable crops within national and international markets relative to other crops such 7 

as wheat, rice or maize. We find that India and Iran with the most groundwater depletion within 8 

economic distance to existing infrastructure (Table 2) also have the most to lose in terms of rice 9 

yield potential: an important staple in local diets. However, yield losses across all crop types are 10 

relatively small compared to overall national production rates, and could likely be recovered 11 

economically through additional crop shifting and imports43.  12 

 In terms of avoided CO2 costs (Table 2), projects in India are estimated to be more 13 

economical than in Iran because India has a combination of lower investment risk (determined 14 

by the weighted average cost of capital) and its electricity grid has a higher CO2 emissions 15 

intensity (determined by the national grid emission factor). Understanding these differences 16 

across regions helps identify where investments bring the largest impacts on both CO2 and 17 

groundwater.  However, it is important to emphasize the grid dispatch strategy might focus PV 18 

integration on the displacement of the most CO2-intensive generating source (e.g., coal), leading 19 

to similar avoided emissions intensities across countries. In this situation, the location specific 20 

financial risk, crop yield and solar resource indicators would continue driving levelized cost 21 

heterogeneities across groundwater stressed regions.  22 

 Existing policies need tweaking to take advantage of the multi-faceted benefits 23 

agrivoltaics offer. Project financing must take an integrated view and consider the influence of 24 

PV development on water resources. For example, there are concerns in groundwater stressed 25 

areas of South Asia that subsidized expansion of PV could lead to increased groundwater stress 26 

due to reduced electricity costs for groundwater pumping44. PV subsidies in similarly 27 

groundwater stressed irrigated areas should be focused on promoting agrivoltaics and include 28 

financing to cover crop yield impacts from the switch to rainfed operations. This paper has 29 

demonstrated the massive untapped potential to generate solar power on groundwater stressed 30 

irrigated area, and the relatively minor impacts of panel shading and crop yield losses from the 31 

switch to rainfed operations.   32 

 The switch to rainfed operations liberates irrigation deliveries, which can be allocated to 33 

groundwater flows that sustain some perennial rivers45. Yet, rainfed operations miss 34 

opportunities for managed aquifer recharge through intelligent irrigation46. Future cost-benefit 35 

analysis of agrivoltaic systems must include a hydro-economic assessment of avoided 36 

groundwater use and opportunities for conjunctive management with surface water resources.  37 

These interactions are complex but may have an important influence on agrivoltaic economics, 38 
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particularly where liberated irrigation deliveries help to avoid investments in unconventional 1 

freshwater supply options (e.g., desalination)8. 2 

 Other uncertainties unaccounted for in this work include the influence of farm size and 3 

how cooperation across farms can achieve economies-of-scale. These partnerships might be 4 

appealing in developing regions where farmers may lack sufficient land area or investment 5 

financing for utility-scale power generation47. Importantly, the analysis did not consider the costs 6 

of power system integration, which may present barriers to widespread PV deployment due to 7 

its impacts on system reserve requirements4. Smart control of on-farm electricity uses may 8 

provide a leverage for demand response that supports system integration.  Diversification of on-9 

farm revenue in agrivoltaic systems and the interplay with technological learning and climate 10 

resilience represent other economic benefits requiring future research. Importantly, there 11 

continue to be major PV technology innovations that could halve the CAPEX in the next 10 years29, 12 

with implications for the levelized cost calculations. Finally, the analysis did not consider the 13 

corresponding energy and emissions impacts from shifts in on-farm machinery and the land-14 

based emissions from different crops48, or the influence of climate change and future crop prices6.  15 

 Future research is needed to address these research gaps, requiring multi-sector modeling 16 

tools that consider the co-dependent transformations in water, energy and land systems. The 17 

multi-dimensional supply curves and framework presented in this paper support the integration 18 

of agrivoltaics into long-term planning models used by decision-makers. 19 
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Country 
GWD1 

[ km3 ] 
CO2 Price2 

[ USD / tCO2 ] 
Solar3 

[ TWh / yr ] 
Wind 
[ TWh / yr ]  

Wheat 
[ kton-DW / yr ] 

Rice 
[ kton-DW / yr ] 

Cotton 
[ kton-DW / yr ] 

Pulses 
[ kton-DW / yr ] 

Maize 
[ kton-DW / yr ] 

Fruit 
[ kton-DW / yr ] 

Vegetables 
[ kton-DW / yr ] 

India 54.07 73 (44,178) 5605 (3475,11708) 1421 (665,1987) 0 (0,0) -39.16 (-0.16,-144.83) 3.56 (3.16,3.4) 0.32 (0.09,0) 45.76 (17.79,120.02) 0 (0,0.72) -94.92 (-161.16,0) 

Iran 23.86 127 (79,301) 1766 (1095,3689) 486 (228,680) 3.25 (1.00,9.06) -45.54 (-45.31,-45.97) 0 (0,0) 3.64 (1.05,3.95) 0 (0,0.77) 0 (0,0) 0.1 (0.04,1.69) 

USA 18.16 116 (68,290) 2871 (1780,5997) 1196 (560,1673) 1.17 (0.84,1.83) 0 (0,0) 0 (0,0) -0.03 (-0.01,-0.19) 0 (0,0) 0 (0,0.17) -86.22 (-91.09,-81.5) 

Pakistan 16.63 166 (103,396) 1554 (964,3246) 380 (178,531) 0 (0,0) -10.88 (-10.88,0) 0 (0,0) 0.08 (0,0.38) 0 (0,0) 0 (0,0) -41.39 (-42.24,-30.09) 

China 13.44 82 (48,203) 3121 (1935,6521) 1187 (555,1659) -0.01 (-0.01,0.01) 0 (0,0) 0.02 (0.02,0.09) -16.19 (-20.13,-14.61) -0.37 (-0.37,-1.94) 0 (0,0) 0 (0,0.01) 

S. Arabia 11.03 85 (50,210) 329 (204,688) 114 (53,159) 0 (0,0) -0.38 (-0.38,0) 0 (0,0) 0 (0,0) 0 (-0.22,0) 0 (-0.08,0) -9.38 (-9.53,-9.08) 

Mexico 6.36 115 (68,283) 792 (491,1654) 216 (101,301) 0.02 (0.02,0.03) 0 (0,0) 0.02 (0.01,0.06) 0 (0,0.35) 0.65 (0,0.76) 0 (0,0) -19.18 (-20.7,-16.83) 

Libya 1.72 86 (52,208) 79 (49,164) 33 (15,46) 0 (0,0) 0 (0,0) 0 (0,0) 0.08 (0,0.18) 0 (0,0) -0.98 (-0.98,0) -2.62 (-2.67,-0.71) 

UAE 1.40 99 (58,246) 49 (30,102) 13 (6,18) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) -1.48 (-1.48,-1.48) 

Russia 0.99 257 (153,627) 103 (64,215) 58 (27,81) 0 (0,0) -1.62 (-2.74,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0.15 (1.43,-1.66) 

Turkey 0.98 282 (172,677) 169 (105,354) 46 (22,65) 0.08 (0.12,0) 0 (-0.9,0) 0 (0,0) -0.06 (-0.18,0) 0 (0,0) 0 (0,0) -3.35 (-3.76,-2.86) 

Uzbekistan 0.77 117 (69,286) 255 (158,533) 95 (44,133) 0.01 (0.01,0.02) -0.18 (-0.18,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) -7.88 (-8.17,-7.44) 

Argentina 0.56 212 (132,494) 111 (69,232) 45 (21,63) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0.15) -3.61 (-3.87,-3.31) 

S. Africa 0.48 66 (39,161) 101 (62,210) 29 (14,40) 0 (0,0) 0 (0,0) 0 (0,0) 0.03 (0.01,0.08) 0 (-0.62,0) 0 (0,0.25) -3.04 (-3.25,-1.95) 

Egypt 0.46 150 (93,359) 122 (76,255) 38 (18,53) 0 (0,0) 0 (0,0) 0 (0,0) 0.06 (0.04,0.06) -0.11 (-0.05,-0.11) -2.49 (-2.49,-2.49) 0 (-0.05,0) 

Spain 0.43 239 (142,588) 172 (107,360) 59 (28,83) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) -5.19 (-5.95,-4.42) 

Morocco 0.37 101 (61,246) 92 (57,192) 26 (12,36) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) -1.17 (-1.3,-0.91) 0.12 (0.1,0.14) 

Yemen 0.36 185 (117,427) 179 (111,373) 33 (15,46) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) -3 (-2.11,-3.07) -1.57 (-1.66,-1.53) 0 (-0.63,0) 

Australia 0.32 73 (42,180) 100 (62,209) 47 (22,66) 0 (0,0) 0 (0,0) 0.01 (0,0.06) 0 (0,0) 0 (0,0) 0.14 (0,0.89) -4.51 (-4.94,-4.15) 

Mauritania 0.27 123 (75,294) 15 (10,32) 7 (3,10) 0 (0,0) 0 (0,0) 0 (0,0.01) 0 (0,0) 0 (0,0) 0 (0,-0.08) -0.46 (-0.46,-0.28) 

Kazakhstan 0.25 128 (76,311) 89 (55,186) 37 (17,51) 0 (0,0) -0.13 (-0.11,0) 0 (0.01,0) 0 (0,0) -2.72 (-2.76,-0.46) 0 (0,0) -0.06 (-0.26,-1.8) 

Romania 0.21 215 (129,527) 185 (115,386) 84 (39,117) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) -3.39 (-4.53,-2.25) 

Algeria 0.21 143 (89,339) 47 (29,98) 17 (8,24) 0.07 (0.06,0.17) 0 (0,0) 0 (0,0) 0 (0,0) -0.15 (-0.15,0) 0.05 (0.04,0.07) -1.66 (-1.87,-1.68) 

Brazil 0.20 375 (226,910) 25 (16,53) 12 (6,17) 0 (0,0) 0 (0,0) 0 (0,0) 0.01 (0,0.03) 0 (0,0) 0 (0,0.01) -0.5 (-0.54,-0.44) 

Italy 0.18 228 (137,558) 20 (12,41) 9 (4,12) 0 (0,0) 0 (0,0) 0 (0,0) 0.13 (0,0.17) 0 (0,0) 0 (0,-0.11) -1.11 (-1.11,0) 

Israel 0.13 78 (46,194) 16 (10,34) 3 (2,5) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) -0.55 (-0.59,-0.52) 

Peru 0.13 108 (63,264) 28 (17,58) 5 (2,6) 0 (0,0) 0 (0,0) 0 (0,0) -0.01 (-0.01,-0.01) 0 (0,0) -0.5 (-0.5,-0.5) 0 (0,0) 

Ukraine 0.12 208 (130,492) 76 (47,158) 43 (20,61) 0 (0,0) 0 (-2.1,0) 0 (0,0) 0 (0,0) 0 (-0.01,0) 0 (0,0) -1.08 (0,-1.42) 

Iraq 0.10 155 (95,363) 12 (7,25) 5 (2,7) 0 (0,0.09) -0.27 (-0.33,0) 0 (0,0) 0.03 (0.02,0.03) 0 (0,0) 0 (0,0) -0.05 (-0.31,0.04) 

Senegal 0.10 125 (76,303) 13 (8,27) 6 (3,8) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) -0.42 (-0.42,-0.42) 

Qatar 0.09 87 (52,217) 3 (2,6) 1 (0,1) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) -0.1 (-0.1,-0.1) 0 (0,0) 0 (0,0) 

Tunisia 0.08 159 (98,381) 26 (16,53) 11 (5,16) 0 (0,0) 0 (0,0) -0.06 (-0.09,0.01) 0.06 (0,0.16) -1.18(-1.18,0) 0.09 (0.15,0.26) -0.4 (-0.4,0) 

Kyrgyzstan 0.08 144 (88,342) 46 (29,97) 8 (4,11) 0 (0,0) -0.18 (-0.18,0) 0 (0,0) 0 (0,-0.05) 0 (0,0) 0 (0,0) -0.07 (-0.46,0.21) 

Canada 0.07 483 (282,1203) 23 (14,48) 15 (7,21) 0.03 (0,0.03) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) -0.18 (-0.21,-0.11) 

Bolivia 0.06 114 (68,273) 8 (5,16) 2 (1,2) -0.01 (-0.01,-0.02) 0 (0,0) 0 (0,0) -0.01 (0,-0.01) 0 (0,0) 0 (-0.02,0) 0 (0,0.03) 

Bulgaria 0.06 169 (102,416) 73 (45,152) 23 (11,32) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) -0.86 (-1.37,-0.36) 

Venezuela 0.05 350 (224,799) 5 (3,10) 2 (1,3) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0.09 (0.05,0.11) 0 (0,0) -0.03 (-0.04,-0.02) 

Chad 0.05 121 (73,289) 2 (2,5) 1 (1,2) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) 0 (0,0) -0.08 (-0.08,-0.08) 

Mongolia 0.04 98 (59,228) 9 (6,19) 3 (2,5) 0 (0,0) 0 (0,0) 0 (0,0) -0.03 (-0.04,-0.03) 0 (0,0) 0 (0,0) -0.01 (-0.01,0) 

Oman 0.03 102 (61,247) 4 (3,9) 1 (0,1) 0 (-0.02,0) 0 (0,0) 0 (0,0) 0 (0,0) -0.14 (-0.14,0) 0 (0,0) 0 (-0.06,0) 

1 GWD = Annual groundwater depletion that is classified within economic distance (200 km) to existing transmission or urban areas. 1 
2 Levelized price per unit of CO2 emissions mitigated from the national electricity systems by the agrivoltaic project. 2 
3 Averages presented with the minimum and maximum from the uncertainty analysis included in brackets. 3 
4 Green shading indicates net gains in yield; orange shading indicates net losses in yield. 4 
Note: The analysis finds negligible impacts to sugarcane when aggregated and the entries are excluded. 5 
Table 2: Solar PV and wind potential, CO2 mitigation costs and impacts on maximum crop yield potentials for the top 40 countries ranked by groundwater stress.  6 
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