Tag Archive for: AgriSolar

OCS Releases Guidance on Community Solar and LIHEAP for Grant Recipients 

“The purpose of this grant recipient information is to: 1) confirm that LIHEAP funds can be used for solar energy use through new and existing electric payment mechanisms, such as community solar subscription fees; and 2) provide LIHEAP grant recipients with recommendations to consider when utilizing LIHEAP funds for community solar subscriptions.” – acf.hhs.gov 

Benefits of community solar include cost savings, access to clean energy, support for local communities, and flexibility in subscription options. 

Solar Grazing Benefits Sheep Herders with Revenue Opportunities 

“The US solar industry has been growing rapidly: The country is expected to break solar construction records this year by adding more than 32 gigawatts of capacity, according to a Bloomberg NEF outlook. That’s enough to power more than 25 million homes. At the same time, there are concerns there won’t be enough cropland to feed a growing world population, especially if acreage is covered by buildings, roads or photovoltaic installations instead. 

The American Solar Grazing Association, founded in 2018, estimates about 5,000 sheep are currently maintaining US solar sites. ‘The sheep do a better job supporting the biodiversity than a conventional mower,’ said Jay Smith, Director of Asset Management at Standard Solar. In some instances, sheep are better suited to maneuver around solar panels than conventional mowers and help reduce carbon emissions. 

The practice [Agrisolar] is giving sheep herders a lifeline, introducing a new revenue stream after a decades-long decline for the US lamb industry. The number of sheep slaughtered in the US has been averaging over 2 million head in recent years, compared to more than 9 million in the early 1970s, according to Department of Agriculture data.” – Bloomberg.com  

German Agrisolar Project Uses Solar to Benefit Hop Growth 

“Germany’s Agri Energie has commissioned an agrivoltaic project in Hallertau, near Munich, in the German state of Bavaria. The €1.5 million ($1.64 million) project combines solar generation with hop growth. 

The company installed the PV system on steel masts, providing protection to hop plants from sunlight and hail, while also reducing evaporation. In addition, the system serves as support for the hop plants.” – PV Magazine 

Written for the AgriSolar Clearinghouse by Allison Jackson, Colorado Agrivoltaic Learning Center

The Boulder Housing Partners Triangle Solar Array is one of the first solar arrays in the Boulder, Colorado, area that is solely dedicated to offsetting energy use for low-income residents. The array is a south-facing fixed array with the leading edge of the solar panels about two feet off the ground. Construction was completed in 2021, and the array will generate over 19 GWh of solar energy in the next 10 years.

This solar array was built on 3.8 acres of degraded, rocky soils with prairie dog burrows and overgrown weeds. It was not an ideal spot for agrivoltaics (co-location of photovoltaics and agricultural activities), but that is what makes the possibility of rehabilitating solar land so appealing. Byron Kominek, owner of Jack’s Solar Garden and executive director of Colorado Agrivoltaic Learning Center, and Duncan Gilchrist of The Nature Conservancy had ideas about repurposing the land around these panels. “If we can demonstrate the ability to grow vegetation in a south-facing fixed solar array built on some of the worst terrain you can imagine for agricultural activities, then we will know that agrivoltaics can work within any solar array site,” stated Byron Kominek. According to Duncan Gilchrist, “The Nature Conservancy’s interest in this project is to demonstrate a replicable model for agroecological land restoration within solar arrays that weren’t originally designed for agrivoltaics.”

Area that has not been altered. Photo: Colorado Agrivoltaic Learning Center

Area of the solar array with swales and perennial plantings. Photo: Colorado Agrivoltaic Learning Center

With no water source at this site, integrating agriculture into the semi-arid climate of Colorado is extremely difficult. So, in conjunction with the Drylands Agroecology Research, the landscape was altered utilizing permaculture ideas of slowing, spreading, and sinking rainfall to aid in water retention. A series of basins were dug and amended with compost at the leading edge of the solar panels to capture moist running off of the solar panels to sink the water deep within the soil’s profile. Having planted hundreds of hardy, drought-tolerant perennials, these basins will hopefully provide a repository of soil moisture for these plants during the driest months of the year. Utilizing the shade from the solar panels will also help slow evaporation from the soil and maintain a more even soil moisture.  

The land was terraformed in November of 2022 with a mini-excavator and shovels. Perennial herbs were purchased and planted within the basins at the leading edge of the solar panels in April 2023. Irrigation was provided only at the time of planting for the perennials to get established. Herbs that were planted include fennel, lavender, lemon balm, oregano, rhubarb, thyme, and wild licorice. These plants will be monitored by researchers from the Dryland Agroecology Research group to assess their survivability and vigorousness.  

Terraforming the land in November of 2022 with a mini-excavator. Photo: Duncan Gilchrist, The Nature Conservancy

One benefit of having people within solar arrays stewarding the land is that they can catch system problems before the solar array asset owner does. Be it damaged panels, unsecured wires, or inverter errors, these issues can be easily monitored and relayed to the asset owner. In the long run, this can save asset owners money in operations and maintenance costs and potentially reduce the chances of lost revenues. During an initial site assessment for the viability of this agrivoltaics research project, consultants noted that the system’s inverters were offline followed by a discovery that the entire system was. The solar array asset owner was rapidly notified to alert their O&M team only to find out that the O&M company no longer serviced this site. The team also noticed that a small tree had grown up between two panels, shading their solar cells. These findings by the assessment team helped the solar array asset owner get their system back online, helped avoid future lost revenues, and kept their system running effectively. 

With the wet spring and summer this year in Colorado, the perennials are growing and thriving. Hopefully, this project can be a model for retrofitting solar arrays and incorporating agriculture under the microclimates that solar panels provide. 

Planting perennial herbs within the basins. Photo: Duncan Gilchrist, The Nature Conservancy  

Bronze fennel plant thriving in the solar array. Photo: Colorado Agrivoltaic Learning Center

Written for the AgriSolar Clearinghouse by Ridge to Reefs staff Emma Verlinden, Paul Sturm, and Phal Mantha

In 2017, the devastation following Hurricane Maria was catastrophic for countless coastal communities. The archipelago of Puerto Rico experienced mass power loss and severe food-supply shortages, leaving many rural communities without power for extended periods of time (in some cases for as long as 6 to 12 months). Agricultural lands became unusable, with crop fields devastated by high winds, extreme rainfall, and incessant flooding. Following the catastrophe, the only seed producer in the archipelago lost nearly their entire supply due to a lack of refrigeration caused by the extended power outage. Meanwhile, shelves were empty at stores due to nearly 90% of Puerto Rico’s food being imported and food spoiling during the power outage.

In response to this challenge, Ridge to Reefs designed a Mobile Solar Walk-In Refrigeration System to help farms reduce post-harvest losses and bring high-quality produce and refrigerated farm goods to market. Additionally, Ridge to Reefs led and assisted in the construction of numerous stationary iterations of this design at various locations throughout Puerto Rico. The mobile system design is constructed around a 6’x14’ single-axle enclosed trailer, with six (280-watt) photovoltaic panels mounted on the rooftop. CoolBot technology is paired with a 10,000 BTU window air-conditioning unit, 2,000-watt Pure Sine Wave inverter, 210 amp-hours of batteries, and a charge controller to maintain temperatures between 40and 55°F per the farmers’ needs. The panels atop the trailer provide 1.68kW of power with ample battery storage, reducing the risk of crop loss in the event of a major power outage. The trailer is fully insulated (to above R-20) throughout the walls, roof, and floor, allowing for heat resistance in even tropical climates. In all, approximately 275 cubic feet of storage is available inside the unit to allow farmers to efficiently store and transport their agricultural goods. Because the power systems are grid-tied in Puerto Rico, and with such high risk of natural disaster occurrences, Ridge to Reefs designed this highly agile system to be grid-independent, using commercial, off-the-shelf technologies as dictated by community need.

Design diagram of the solar-powered refrigerated trailer system.
Aerial view diagram of the solar-powered refrigerated trailer system.

The construction and deployment of a mobile refrigeration system presents a viable solution for producers to more efficiently transport and store their goods throughout tropical regions, especially those that are susceptible to natural disasters. The entire system was constructed for approximately $10,000 USD, but potential grant and funding opportunities for farmers seeking to transition to solar operations could allow technology of this sort to become more available. Additionally, this option may allow island communities to cultivate greater market portions of locally sourced foods by increasing the sales reach of small-scale agricultural operations. Many producers do not have access to refrigerated shipping methods, and having on-site cold storage and transport for their goods can prove very economically stimulating.

Costs of electricity in island regions such as Puerto Rico and Hawai’i are on average four times higher than in mainland communities, which can prove detrimental to the capabilities of local farms in these regions. By providing farmers with the capacity to store and distribute their produce independently, they are able to reinvest the saved costs and increased profits into their own operations and increase overall productivity. In this way, the solar-powered refrigeration systems also promote local circular economies.

Completed construction of the mobile solar-powered refrigeration prototype that was donated by Ridge to Reefs. 

The deployment of the mobile solar cold-storage system also taught our team and partners numerous valuable lessons. First, in mountainous regions, maneuvering a towed trailer system can be less than ideal and a task not every driver is comfortable with. It may be worth exploring integrating this sort of system into a “Sprinter” van or similar large van. Furthermore, the utilization of lithium iron phosphate or even lithium ion battery banks may offer significant advantages and may prove to be feasible improvements. With our system, an increase in battery bank capacity would have significantly improved standalone time and a battery bank capacity of closer to 300 or 350 amp-hours would have provided three to four days of standalone time. Additionally, with improvements in solar panel technology, many higher-output panels are available with the same dimensions. For example, 330-watt panels could be used for the next generation, allowing for higher power output. The Ridge to Reefs Team plans on first upgrading the existing mobile trailer with these improvements and is also seeking opportunities to construct and deploy similar systems in the future. 

The implications of solar integration into agricultural operations are vastly important, especially considering the global call for an increase in the utilization of renewable energy sources. While this system is a small-scale mobile refrigeration unit, Ridge to Reefs has also constructed numerous other stationary solar refrigeration systems throughout Puerto Rico to ensure the security of crops for farmers during times of distress. Systems such as these could create opportunities for producers in other tropical regions such as Hawai’i by allowing them to reduce crop wastage, reach new markets, recirculate money in their community, and address concerns  related to sustainability, food security, and developing local economies.

Photos courtesy of Ridge to Reefs

For more than 150 years Knowlton Family Farms in Grafton, Massachusetts has been a family-owned operation. It’s grown and shrunk over the years, and now is back in a period of expansion thanks to combining solar energy production with agriculture.

The National Center for Appropriate Technology’s (NCAT) AgriSolar Clearinghouse today released its short film “The Cows Come Home,” which shows viewers how the Knowlton family has been able to reintroduce cattle to their farm. Owner Paul Knowlton says the last of their dairy cows were sold in 1995, and now they’ve been able to bring cattle back to the farm to graze among solar panels.

“We really wanted to try to do something different, and we made it happen, it’s a reality, and I couldn’t be more pleased with the results,” Paul Knowlton said. “It was designed with the cows in mind, vegetables in mind, and also we can put a variety of different animals in here for grazing. They [the cows] took to it like fish to water.”

AgriSolar or agrivoltaic partnerships are growing across solar-appropriate farmland in the U.S., providing a new revenue source for farmers, clean energy for surrounding communities, and myriad benefits to crops, livestock, and pollinators.

Knowlton says agrisolar is what has allowed his farm to remain a viable family business.

“Nationwide, this could be a new standard,” Knowlton adds. “The idea of year-round revenue is really, really important. Having a farm that has the ability to survive is just so important. This is a way to keep the farmland going.”

NCAT’s AgriSolar Clearinghouse is connecting businesses, land managers, and researchers with trusted resources to support the growth of co-located solar and sustainable agriculture.

“AgriSolar partnerships are helping to keep family farms in family hands,” said NCAT Energy Director Stacie Peterson, PhD. “We can maximize finite resources for the benefit of communities, the environment, and businesses when agriculture and energy come together.”

Written for the AgriSolar Clearinghouse by Ridge to Reefs staff Phal Mantha and Paul Sturm

Agricultural operations, land management, and environmental projects all have a strong need for consistent monitoring and recording of field conditions over long periods of time. Assessing local environmental conditions can be critical for timing farm operations, as well as for making important management decisions. However, due to the remote location of many farms and sites, this monitoring can prove to be a major challenge. This challenge is further compounded on sites where there is no access to grid power, Wi-Fi signal, cell service or other means of powering sensors and transmitting vital data.

In this context, the use of simple standalone photovoltaic (PV) systems in conjunction with wireless jetpacks and/or Low Power Wide Area Networks (LPWA) present a viable and cost effective solution to address some of these challenges. This brief case study highlights the use of one such system to perform real-time monitoring of environmental conditions, including soil health. In addition to monitoring, this system was also capable of controlling a Hunter PHC-1200 Wi-fi Irrigation Control System.

Fig. 1 Site plan for the Pilot Phytoremediation System installed in Kihei, Maui.

Ridge to Reefs and Sunshine Vetiver Solutions were implementing a nature-based waste-water treatment system in Kihei, Maui, Hawaii. The State of Hawai’i currently injects over 15 million gallons per day of secondary treated wastewater effluent into groundwater injection wells. In 2020, this contentious practice was ruled a violation of the Clean Water Act by the U.S. Supreme Court in the landmark case County of Maui v. Hawaiʻi Wildlife Fund. To highlight low-cost alternatives to groundwater injection, a pilot phytoremediation system was designed and constructed to determine the area required to treat and dispose of the 1.8 million gallons per day that the Kihei Wastewater Reclamation Facility currently injects. To measure this, a ⅓ acre plot of the sterile Sunshine cultivar of vetiver grass was established at the site. 

Figure 2. Vetiver Grass establishment within 3 months.

There was no access to power or the internet, making system monitoring a real challenge. First a low-cost, small capacity PV system was set up, which included a single solar panel, charge controller, battery, and inverter. The electronics for this system were mounted inside a shipping container at the site, while the single solar panel was mounted on top of the container.

Next, a Verizon Mi-Fi jetpack mobile hotspot device was purchased from a local Verizon retailer. Though this service required a monthly subscription, it provided a consistent and stable internet connection, enabling the rest of the components to receive and transmit data. Furthermore, the jetpack used very little power through a USB connection and was perfectly suited for running on a small PV system plugged into the inverter.

Figure 3. Davis Instruments Vantage Pro 2 Wireless Weather Station.

To measure localized environmental conditions, including precipitation, temperature, wind speed, and solar radiation, a Davis Instruments Vantage Pro 2 wireless weather station was installed at the site. In addition to atmospheric conditions, the project required that real-time nutrient monitoring was performed within the soil profile. In order to enable this, two Terralytic soil probes were installed within the vetiver rows in different locations within the test plot. These probes are capable of recording and transmitting real-time data for important soil-health parameters, including soil moisture, salinity, nitrate, potassium, phosphorus, soil temperature, pH, respiration, and aeration, and allowed us to verify that the system was working properly and effectively treating the effluent from the wastewater treatment plant.  

Figure 4. Terralytic Soil Probe and the various parameters it provides real time data on.

Finally, a Hunter PHC-1200 Wi-Fi Irrigation Control System was also installed at the site, allowing our team to wirelessly monitor and control the distribution of effluent throughout the different zones in our test plot. The Hydrawise software that controls this system allows anytime access from a smartphone or tablet with this remote monitoring, facilitating remote monitoring and management of the irrigation controls. Furthermore, the web-based monitoring was linked to local weather forecast data, including temperature, windspeed, precipitation, and other factors to automatically adjust our system to local conditions. This ensured that we were not irrigating while it was raining and maximized the evapo-transipirative potential of the system.

Figure 5. The Hunter PHC-1200 Wi-Fi Irrigation Control System that was installed at the site.

A simple and low-cost standalone PV system can be combined with off-the-shelf mobile hotspot technology and weather stations/soil probes to provide high-quality, real-time data on both atmospheric conditions and soil health. Furthermore, this type of configuration can be combined with wifi-enabled irrigation controllers, allowing farmers, landowners, and land managers to control and automate irrigation operations in a highly efficient manner, even in remote areas lacking grid power and connectivity.

All photos courtesy of Ridge to Reefs.

U.S. Senators Introduce Bipartisan Bill that Supports Agrivoltaics Research 

“U.S. senators on both sides of the aisle have recently proposed two bills to boost agrivoltaics, the double-duty climate solution that pairs solar panels (photovoltaics) with agriculture — or closely related land uses that benefit farmers and ecosystems. 

In May, senators Jeff Merkley (D-Oregon) and Cory Booker (D-New Jersey) introduced the Pollinator Power Act. Its passage would direct the U.S. Secretary of Agriculture to prioritize solar projects funded by the Rural Energy for America Program that create habitat for pollinators underneath the panels. Pollinators such as bees, butterflies and beetles are responsible for pollinating three-quarters of flowering plants and 35 percent of food crops, but populations are in striking decline, in major part because of habitat loss. 

On the heels of the pollinator bill, senators Martin Heinrich (D-New Mexico) and Mike Braun (R-Indiana) worked across the aisle to jointly propose legislation that could catalyze the growth of agrivoltaics in the U.S.: the Agrivoltaics Research and Demonstration Act. If made law, the act would invest $15 million per year from 2024 to 2028 — $75 million total — toward agrivoltaics research and demonstration projects.” – Canary Media 

“”Agrivoltaic systems within the legislation apply to lands where agricultural activities and solar energy production are simultaneously taking place. The USDA’s National Institutes of Food and Agriculture would work closely with the Department of Energy to establish a network of demonstration sites nationwide through the legislation. Agrivoltaic advocates note that the practice can increase farm profits through the reduction in energy use or selling of energy generated on-farm. Other supporters of the legislation include American Farmland Trust (AFT) and the National Sustainable Agriculture Coalition.” – AgNet West 

Danish Agrisolar Project will Utilize Sheep Grazing 

Danish renewable energy company Eurowind Energy is developing an agrivoltaic project in Romania, a 70 MW photovoltaic park that will combine solar energy with agriculture. The solar park will span 80 hectares, with 119,184 modules, while its projected annual electricity output is about 102 GWh, enough to supply some 30,000 households. 

At the same time, 130 farmers will be able to use the 80-hectare land for their animals to graze, according to media reports, which cited a press release from Eurowind Energy. 

Recently, works were launched on Croatia’s first agrisolar power plant, in a project that will involve sheep farming. Earlier this year, Hungary-based BSD Invest Europe said it was planning to install a solar park with on the Serbian-Montenegrin border, which would simultaneously be used for sheep farming and growing berries.” – Balkan Green Energy News 

Ohio Agrisolar Project Funded by State Agency 

“The Madison Fields project is being developed by Savion Energy of Kansas City, Missouri, and is expected to be completed in December 2023 and plans to operate for at least 30 years. The company is working with Ohio State University’s Extension Service on pairing agriculture with solar. 

The 180-MW solar facility is expected to generate the equivalent power for up to approximately 35,000 households. The project creates two full-time permanent jobs and 596 full-time temporary positions during the construction phase.  

The company has received community support for the project including from the Board of Commissioners of Madison County, the Madison County Soil and Water Conservation District, Pike Township and Fairbanks Local School District.” – Solar Power World 

By Anna Richmond-Mueller, NCAT Energy Analyst

Just outside of Gurley, Alabama, a herd of grazing llamas and alpacas find refuge from the sun underneath a solar array. Tony and Cozette O’Neil, owners of Cozy Cove Farm, have been raising the animals since 1995, shearing their fleece to make yarn and felt. Today, the O’Neils are also proud renewable energy producers for their community, thanks to the 50-kW solar system that has been generating electricity since February 2013.

A retired NASA engineer, Tony has believed in the power of solar technology since his work on the solar-powered space station Skylab in the 1970s. In 2012, with an electric bill sometimes reaching $500 a month, he learned that he could generate and sell renewable energy to the Tennessee Valley Authority (TVA). The cost of solar equipment was decreasing around this time as well, making it the ideal time to install solar on their 54-acre farm. Working with Outpost Solar, the O’Neils planned a photovoltaic system consisting of 208 fixed-tilt panels in a 100-by-100-foot area, tucked away on a corner of their pastureland next to the Flint River. Because the array was built on a floodplain, the panels had to be elevated to seven feet above ground level. The unexpected change to the design had an upside: shade for more than 100 llamas and alpacas that call Cozy Cove Farm home.

The O’Neils took advantage of several incentives to build their solar array, which totaled $160,000 upon completion. The majority of the cost was covered by a 30% federal tax credit and a 25% USDA REAP grant. Smaller grants from state and local programs brought the out-of-pocket cost to just under $48,000. Alabama Farm Credit provided the O’Neils with a loan for the remaining amount, which they were able to pay back completely in October of 2017. In just under five years, the array paid for itself thanks to a 10-year contract with the TVA that paid them 22 cents per kWh of electricity generated.

Today, 10 years after the solar system’s completion, the O’Neils continue to benefit from its installation. Service and repair costs have been low, with only one panel needing replacement from damage in the first year. At the end of their initial contract, the O’Neils signed a subsequent contract for an additional 10 years that allows the TVA to purchase the electricity they produce at the same rate their utility charges them for their energy consumption. “This provides us with approximately $3,500 a year after all of our farm energy needs are paid for,” says Tony. He also encourages other farmers considering installing solar on their property to think long-term. “Electricity cost is only going to increase in the future, and the cost of solar panels and inverters are at an all-time low at present.” While many agrisolar projects are still in the first few years of operation, Cozy Cove Farm stands as a shining example for how agrivoltaic installations can benefit their owners for over a decade.

Photo credit: Scott Sklar, George Washington University

In this case study, researchers quantified the increase of land productivity derived from the integration of an experimental vertical farm (VF) for baby leaf lettuce inside a commercial photovoltaic greenhouse. The mixed system increased the lettuce yield by 13 times compared to a non-VF PV greenhouse and the average LER was 1.31. However, only 12 %
of the energy consumption was covered by the photovoltaic energy system.

The objective of this thesis work is to evaluate the introduction of agrivoltaics in Italy through the study of the effect of the presence of photovoltaic panels on the final yield of potatoes in Ferrara, Italy. The findings of this preliminary study indicate that agrivoltaic systems should be designed while taking into account the need to ensure a minimum level of incident radiation at least in the first two months of cultivation, to avoid an inter-row production drop. Furthermore, photovoltaic panels are not responsible for the absolute low yield in years with unfavorable weather conditions, such as cold years; on the contrary, they may mitigate the damages to the crop by creating an underneath microclimate and the resulting higher temperature, which however is a hypothesis to be verified in more detail in future studies.